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Abstract 

 Over the past century in the western United States, warming has produced 

larger and more severe wildfires than previously recorded. General circulation models 

and their ensembles project continued increases in temperature and the proportion of 

precipitation falling as rain. Warmer and wetter conditions may change forest 

successional trajectories by modifying rates of vegetation establishment, competition, 

growth, reproduction, and mortality. Many questions remain regarding how these 

changes will occur across landscapes and how disturbances, such as wildfire, may 

interact with changes to climate and vegetation. Forest management is used to 

proactively modify forest structure and composition to improve fire resilience. Yet, 

research is needed to assess how to best utilize mechanical fuel reduction and 

prescribed fire at the landscape scale. Human communities also exist within these 

landscapes, and decisions regarding how to manage forests must carefully consider how 

management will affect such communities. 

In this work, I analyzed three aspects of forest management at large 

spatiotemporal scales: (1) climate effects on forest composition and wildfire activity; (2) 

efficacy of fuel management strategies toward reducing wildfire spread and severity; 

and, (3) local resident perspectives on forest management. Using a forest landscape 

model, simulations of forest dynamics were used to investigate relationships among 

climate, wildfire, and topography with long-term changes in biomass for a fire-prone 

dry-conifer landscape in eastern Oregon, United States. I compared the effectiveness of 
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fuel treatment strategies for reducing wildfire under both contemporary and extreme 

weather. Fuel treatment scenarios included “business as usual” and strategies that 

increased the area treated with harvest and prescribed fire, and all strategies were 

compared by distributing them across the landscape and by concentrating them in areas 

at the greatest risk for high-severity wildfire. To investigate local community 

preferences for forest management, I used focus groups, interviews, and 

questionnaires. Through open-ended questions and a public participation geographic 

information systems (PPGIS) mapping exercise, local residents expressed their views on 

fuels reduction treatments by commercial and non-commercial harvest and prescribed 

fire. Emergent themes were used to inform alternative management scenarios to 

explore the usefulness of using PPGIS to generate modeling inputs. Scenarios ranged 

from restoration-only treatments to short-rotation commercial harvest. 

Under climate change, wildfire was more frequent, more expansive, and more 

severe, and ponderosa pine expanded its range into existing shrublands and high-

elevation zones. There was a near-complete loss of native high-elevation tree species, 

such as Engelmann spruce and whitebark pine. Loss of these species were most strongly 

linked to burn frequency; this effect was greatest at high elevations and on steep slopes. 

Fuel reduction was effective at reducing wildfire spread and severity compared 

to unmanaged landscapes. Spatially optimizing mechanical removal of trees in areas at 

risk for high-severity wildfire was equally effective as distributing tree removal across 

the landscape. Tripling the annual area of prescribed burns was needed to affect 
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landscape-level wildfire spread and severity, and distributing prescribed burns across 

the study area was more effective than concentrating fires in high-risk areas. 

Focus group participants generally approved of all types of forest management 

and agreed that all areas should be managed with the “appropriate” type of treatment 

for each forest stand, and that decisions about management should be made by 

“experts.” However, there was disagreement related to who the “experts” are and how 

much public input should be included in the decision making process. Degree of trust in 

land management agencies contributed to polarized views about who the primary 

decision makers and what the focus of management should be. While most participants 

agreed that prescribed fire was a useful tool for preventing wildfire spread and severity, 

many expressed reservations about its use. 

I conclude that forest management can be used to reduce wildfire activity in dry-

mixed conifer forests and that spatially optimizing mechanical treatments in high-risk 

areas can be a useful tool for reducing the cost and ecological impact associated with 

harvest operations. While reducing the severity and spread of wildfire may slow some 

long-term species shifts, high sub-alpine tree mortality occurred under all climate and 

fuel treatment scenarios. Thus, while forest management may prolong the existence of 

sub-alpine forests, shifts in temperature, precipitation, and wildfire may overtake 

management within this century. The use of PPGIS was useful for delineating the range 

of forest management preferences within the local community, for identifying areas of 

agreement among residents who have otherwise polarized views, and for generating 
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modeling inputs that reflect views that may not be obtained through extant official 

channels for public participation. Because the local community has concerns about the 

use of prescribed fire, more education and outreach is needed. This may increase public 

acceptance of the amounts of prescribed fire needed to modify wildfire trajectories 

under future climate conditions.  
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Preface 

Chapters 2, 3, and 4 will be submitted to scientific journals as individual 

manuscripts for publication. This is reflected through some repetition of background 

information and methods. References are cited at the end of the dissertation by 

chapter. 
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Chapter 1 – Introduction 

Wildfire management is an issue of increasing concern to communities in 

geographic locations where homes and natural resources are interspersed with fire-

prone forests (Brenkert–Smith et al. 2006, Gordon et al. 2010). Over a century of fire 

suppression, timber harvesting, grazing, and other land uses in the western United 

States have contributed to shifts in forest structure and composition, which have 

contributed to changes in fire frequency, size and severity (Heyerdahl et al. 2002, 

Franklin and Johnson 2012, Churchill et al. 2013, Halofsky et al. 2014, Hagmann et al. 

2014). Annual area burned and the resulting economic impacts of increased fire 

suppression efforts and losses in natural resources and private property have increased 

over the past several decades and are expected to continue increasing (Littell et al. 

2009). It is imperative to understand how forest composition will change under 

projected climate conditions and how fire occurrence, area burned, and severity will 

interact with changing forests and emissions-driven climate futures to inform effective 

forest management (Keane et al. 2009). 

Previous studies have shown that fuel treatments in dry mixed-conifer forests 

are effective in reducing wildfire severity when fires intersect existing treatments 

(Prichard et al. 2010, Johnson et al. 2011, Syphard et al. 2011a, Safford et al. 2012) and 

that combining mechanical thinning with prescribed burning can be more effective than 

each treatment type alone (Schwilk et al. 2009). Modeling studies have also shown that 

managing forests to reduce fuel loading leads to improved resilience to wildfire (Fulé et 
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al. 2001, Ager et al. 2010, Johnson et al. 2011, Halofsky et al. 2014, Loudermilk et al. 

2014). However, wildfire activity is expected to increase with ongoing climate change 

(Westerling et al. 2006a, Fried et al. 2008, Littell et al. 2009, Abatzoglou and Williams 

2016), and there is a need for greater understanding of how effective fuel treatments 

will be under future climatic conditions at the landscape scale and over time. 

In addition, decisions about forest management must balance social needs with 

ecological needs and are constrained by economics, policy, and social acceptability 

(Brunson 1993, Bengston 1994, Shindler et al. 2002, Armitage et al. 2009). In regions 

where wildfire has increasingly affected communities through destruction of property, 

and losses of natural resources, communities have developed polarized views about 

how fire and forests should be managed (Gordon et al. 2010). Over the past two 

decades, social science research into the human dimensions of wildfire has increased, 

building a picture of the impacts of wildfire on humans and their views on wildfire 

prevention, suppression, and recovery (McCaffrey et al. 2013) even as an increasing 

number of people move into fire-prone landscapes (Theobald 2001, Radeloff et al. 

2005). While decision-making around forest management practices in public forests 

rests with land management agencies, public input and collaboration are important 

steps in developing priorities and strategies.  

The public has opportunities to review proposed plans and to provide input 

through public engagement meetings, participation in formal collaborative forestry 

organizations, or public comment on environmental impact statements (U.S. EPA 2017). 
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But communities with low civic capacity resulting from issues such as a lack of trust in 

government decision-makers or long-term economic dissatisfaction may choose not to 

participate constructively in the collaborative process (Dent 2008). In fact, participation 

can increase civic capacity (Potapchuk and Crocker Jr 1999), creating a positive feedback 

that helps communities grow together instead of apart in terms of natural resource 

problem solving, further underscoring the benefits of community participation when 

opportunities exist. Therefore, this study links research into climate, forest management 

and wildfire with qualitative research into community preferences for fuel treatments in 

a rural landscape in eastern Oregon that is characterized by dry mixed-conifer forests 

and frequent wildfire (Johnston et al. 2017).  

In Chapter 2, I examined the interactions among climate change, forest 

dynamics, and wildfire across the study landscape over a 90-year period. I used a 

dynamic forest landscape model to simulate forest growth and wildfire under three 

different climate scenarios: contemporary weather, moderate climate change (RCP 4.5) 

and high climate change (RCP 8.5). I met with fuels managers, ecologists and 

silviculturists to develop management prescriptions that reflect current practices for 

commercial harvest, non-commercial harvest, and prescribed fire. I held management 

constant across all three scenarios in order to quantify the degree to which the range of 

projected future climate conditions increase wildfire behavior and drive shifts in 

individual species biomass and extent on the landscape. Finally, I investigated shifts in 

biomass of individual tree species and used multi-variate analysis to understand how 
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climate, wildfire, and abiotic landscape characteristics influenced changes in species 

dominance and persistence.  

In Chapter 3, I took a comparative approach to assessing the effectiveness of 

alternate management strategies in reducing wildfire extent, frequency and severity. 

Leveraging the model parameters and calibration from Chapter 2, I developed 

management strategies that accelerated the pace of fuel treatments by adding 

management in riparian areas, where very little treatment currently occurs, and by 

doubling and tripling the annual area treated with prescribed fire. I then compared 

these treatment strategies under contemporary weather and under extreme weather 

conditions that occurred during years with high wildfire occurrence, spread, and 

severity. These conditions reflect the warmer temperatures, altered precipitation, and 

stronger winds that are expected to occur more frequently as the climate continues to 

warm (Westerling et al. 2006a), underscoring the importance of understanding how fuel 

treatment strategies will perform under these conditions.  

To examine strategies that consider budgetary and social acceptability 

constraints to management, I assessed the potential for concentrating management 

activity into a smaller geographic area. Limiting the location of treatments could reduce 

costs associated with maintaining extensive road networks as well as meet a social 

objective of maintaining more area of forest that appears to be untouched or 

unmanaged. I ran 1,000 simulation-years of wildfire under extreme weather with no 

management to identify sites on the landscape that burned the most frequently at high 
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severity and restricted management to those areas that were outside of protected areas 

(e.g. wilderness).  

Finally, in Chapter 4, I delved further into issues of social acceptability and public 

input into forest management decision making using qualitative research on community 

preferences for fuel treatments. Through coding transcripts from focus groups and 

interviews, I identified seven primary themes and 35 sub-themes that inform 

community-members’ preferences for fuel treatment. I developed spatial themes 

through a public participation geographic information systems (PPGIS) activity, which 

allowed participants to draw polygons on maps of the landscape to indicate where on 

the landscape they were willing to see different types of treatment including light/pre-

commercial thinning, heavy thinning/commercial harvest, and prescribed fire. I used 

these preference and spatial themes to develop management strategies that reflect the 

range of participant preferences and compared their effectiveness in reducing wildfire 

activity and preserving sensitive forest under climate change over a 90-year simulation 

period. 

This study used a landscape-level approach to link climate change with future 

wildfire and forest dynamics in dry ponderosa pine-dominated forests in eastern 

Oregon. It looked at long-term trajectories of wildfire activity during years with extreme 

weather under a range of management strategies. And it incorporated community input 

into the development of management strategies that aim to improve social acceptability 

of fuel treatments while examining tradeoffs between conflicting priorities.  
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Chapter 2 - More widespread and severe wildfires under climate change lead to 
dramatic declines in high-elevation species in the dry mixed conifer forests of the 
inland western U.S. 
 

2.1 Introduction and background 

The climate in the western United States is rapidly changing (Pachauri et al. 2014), 

and area burned by wildfire has increased over the past several decades coincident with 

rising temperatures (Westerling et al. 2006, Abatzoglou and Williams 2016). This pattern 

is expected to continue because of longer fire-seasons, increased drought periods, and 

higher average temperatures. Hot and dry periods lead to greater ignition and fire 

spread probability through increasing live and dead fuel loading (Littell et al. 2016) 

especially, in some regions, when following wetter years that encourage additional 

vegetative growth and increase the continuity of fuels (Westerling et al. 2006).  Dry 

forests in the western U.S. have experienced shifts in species composition and forest 

density over the past century (Franklin and Dyrness 1973, Agee 1998, Heyerdahl et al. 

2001, Hessburg et al. 2005, Franklin and Johnson 2012, Hagmann et al. 2014). Many 

studies have documented these shifts, and although there is some disagreement about 

historical forest structure (Williams and Baker 2012, 2014, Fulé et al. 2014, Odion et al. 

2014), most agree that vast areas of the west were covered by fire-adapted dry forests 

with low-severity, frequent (<35 year return intervals) fire regimes (Franklin and 

Johnson 2012), and that anthropogenic influences have led to dry forests becoming 

denser with increased fuels (defined here as increased continuity of horizontal and 
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vertical fuel structure), lower mean tree diameters, and a greater proportion of fire 

intolerant tree species such as Abies grandis (Larson and Churchill 2012).  

 Land-use and other anthropogenic factors have contributed to creating forests 

that no longer resemble those that existed before the early 1900s (Langston 1995, 

Hessburg et al. 2005, Stephens et al. 2009, Johnson et al. 2011). Fire suppression, forest 

and meadow conversion for cattle grazing and agriculture, and a history of extensive 

commercial timber harvest have driven a shift from large, widely-spaced trees to dense 

stands of small-diameter trees (Franklin and Johnson 2012, Churchill et al. 2013). This 

change in forest structure has also led to an increase in both horizontal and vertical fuel 

beds that support higher severity fires (Agee 1998, Agee and Skinner 2005). 

Climate is interrelated with forest dynamics and wildfire in complex ways 

(Heyerdahl and Alvarado 2003, Whitlock 2003, Schoennagel et al. 2004, Brown et al. 

2008) and drives vegetation distribution through the number of growing degree days, 

temperature, amount and timing of precipitation, and number of drought days. Species 

respond to these variables through growth, regeneration, competition, and mortality 

(Halofsky et al. 2013), and climate change-related reductions in snowpack, earlier spring 

snowmelt, and more frequent drought conditions contribute to weakened trees that are 

susceptible to disease and insect infestations. Changes in forest species composition 

(i.e., from fire-tolerant to intolerant species) exacerbates forests’ susceptibility to fire, 

further shifting fire regimes from historically low-intensity, low-severity ground fires 
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with patches of moderate and high severity to more extensive high-intensity, high-

severity crown fires (Parsons and DeBenedetti 1979, Hessburg et al. 2005). 

 It is imperative that we understand how forest composition will change under 

projected climate conditions and how fire occurrence, area burned, and severity will 

interact with changing forests and emissions-driven climate futures to inform effective 

forest management (Keane et al. 2009). Restoring dry forests to more closely resemble 

historical forests in terms of composition, structure, and fire regime has been a focus of 

land management agencies for several decades (Agee and Skinner 2005). Guidelines for 

dry forest restoration are designed to improve resilience to disturbance, including 

wildfire, by managing for older/larger trees, reducing stand densities, favoring tree 

species that are fire- and drought-tolerant and creating a patchy mosaic of forest stands 

across the landscape (Agee and Skinner 2005, Franklin and Johnson 2012, Churchill et al. 

2013).  Considering likely shifts in species distribution and dominance across forests due 

to both climate change and changing fire regimes should be a key consideration when 

planning forest management activities. 

Many studies link historical climate patterns with forest and fire dynamics to 

make predictions of future trends (Swetnam and Betancourt 1990, Swetnam 1993, 

Heyerdahl et al. 2002, Westerling et al. 2006, Brown et al. 2008) and to understand how 

forests will change over time under a range of projected climate conditions. Mechanistic 

models are frequently deployed to simulate known biophysical processes and their 

relationships with climate and to allow for comparisons among multiple management 
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actions over long periods of time. These models can exceed the forecasting capacity of 

empirical studies and statistical models by simulating complex interactions among 

multiple ecological processes (e.g., plant establishment, competition and mortality, seed 

dispersal, climate variation and changes over time, and disturbances), allowing for 

spatial variation in conditions, changing conditions through time, and allowing for 

emergent behavior, e.g. novel conditions (Williams and Jackson 2007, Gustafson 2013). 

Carefully calibrated forest landscape models (FLMs) allow forest conditions and 

disturbance regimes to emerge through simulation and are not constrained by pre-

defined states, which facilitates understanding not only beginning and ending points, 

but continuous trajectories of forest conditions through time (Gustafson 2013). 

Through this study, I sought to understand the relationships among climate 

change, dry mixed-conifer forest dynamics and wildfire by comparing shifts in both 

forest composition and wildfire activity under contemporaryclimate and a range of 

projected climate conditions. To assess these relationships, I simulated forest and fire 

dynamics under current management practices in a fire-prone landscape in the 

Southern Blue Mountains of central Oregon under contemporaryweather and climate 

change conditions and compared fire activity and species distribution. I also sought to 

assess the relative contributions of increased fire activity, climate inputs, and other 

abiotic variables in driving species distribution across the landscape.  
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2.2 Methods 

2.2.1 Study site   

The study site is located in the southern part of the Blue Mountains in central 

Oregon, U.S.A. (Figure 1), covering 938,786 ha, of which 666,330 ha are forested, 34,232 

ha are potential forest (e.g., recently burned), and 238,224 ha are grasslands and 

shrublands (LEMMA, 2014). Elevation ranges from 719 – 2,744 meters above sea level 

(Figure 2). Climate in the Blue Mountains is continental with cold, wet winters and hot, 

dry summers.  

 

Figure 2.1. The study site, indicated by a thick black line, is located in the region of the Malheur 
(green) and Wallowa-Whitman (blue) National Forests in the southern Blue Mountains in 
Oregon, USA.  
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Figure 2.2. Elevation map of the study area. Elevation ranges from 2,359 – 9,001 feet (719 – 
2,744 meters) above sea level.  
 

Mean January and June temperatures are -3 °C and 19.3 °C respectively (1981 – 

2010; NOAA 2016, average of 9 weather stations within the study area) with average 

annual precipitation of 364 mm (1979 – 2014; Abatzoglou 2013), most of which falls as 

snow (Heyerdahl et al. 2002, NOAA 2016). There is an increase in average summer 

precipitation (47 – 55 mm) and a corresponding decrease in average summer 

temperatures (27 – 25 °C) from the southwest to the northeast of the study area (Figure 

2.3).  Climate fluctuations are influenced by the El Niño-Southern Oscillation (ENSO) 

phenomenon, which is linked to cyclic rising and falling of sea-surface temperatures in 

the equatorial Pacific Ocean (NOAA 2005). In the Pacific Northwest region, El Niño years 

are characterized by hot and dry winters and springs (Cayan et al. 1999, Heyerdahl et al. 

2002), which in the Blue Mountains is reflected as less than normal snowpack. Dry 

summer lightning storms are frequent throughout the southern Blues, and aspect is 
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important in driving moisture and temperature. South-facing slopes have higher surface 

temperature and lower relative humidity than north-facing slopes, especially on steep 

slopes (>50%; Heyerdahl et al. 2001).  

 

Figure 2.3. Ecoregions and climate gradients developed from measured daily weather data from 
1979 – 2014. (a) Twenty five ecoregions are determined by a combination of summer (June, 
July, August) mean maximum daily temperature and mean precipitation and by soil available 
water supply. Dashed line indicates the SW to NE gradient (b) Maximum summer temperatures 

b

a. 
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decreased by 3.62 ˚C and average summer precipitation increased by 37.77 mm from the 
southwest to the northeast. Data are from the period 1979 – 2010. 
 

Forest association zones in the Blue Mountain region are Juniperus occidentalis, 

Pinus ponderosa, Abies grandis and Abies lasiocarpa (Franklin and Dyrness 1973). 

Current forested communities consist primarily of dry Pinus ponderosa (ponderosa pine) 

and dry mixed-conifer, which is dominated by a mix of ponderosa pine, Pseudotsuga 

menziesii var. glauca (rocky mountain Douglas fir here-after referred to as Douglas fir), 

Abies grandis (grand fir), and Larix occidentalis (western larch). Juniperus occidentalis 

(western juniper) is present in both forest types, although it is not dominant. At higher 

elevations, Abies lasiocarpa (sub-alpine fir), Pinus contorta var. latifolia (lodgepole pine) 

and Picea engelmannii (Engelmann spruce) are present, and both Pinus albicaulis 

(whitebark pine) and Pinus monticola (western white pine) are found in limited 

populations. Riparian areas contain Populus tremuloides (trembling aspen) as well as 

deciduous shrub species (e.g., Vaccinium spp., Salix spp.) and encroaching young 

conifers resulting from fire suppression, ungulate browse, and a lowered water table 

(Dwire et al. 2017) as well as scattered relict conifers greater than 120 years of age. Both 

low and high-elevation shrublands are dominated by Artemesia spp. (sagebrush) and 

Purshia tridentata (antelope bitterbrush; LEMMA, 2014).  

This area is burned by frequent wildfires and is shaped by a legacy of commercial 

timber harvest (Heyerdahl and Agee 1996) as well as large-scale restoration efforts 

(USDA Forest Service, Malheur National Forest 2015) making it an appropriate case 

study to examine the influence of climate on forest dynamics and wildfire in a managed 
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landscape. The historical fire regime, prior to the advent of aggressive fire suppression 

around 1900, was frequent with mean fire return intervals between 10.6 – 28.2 years 

across both Ponderosa pine-dominated and mixed-conifer sites (Heyerdahl 1997, 

Johnston et al. 2016). More recent fire frequency is mediated by active fire suppression, 

but there continues to be an average of 1.6 fires per year within the study area 

boundaries and an average of 13,200 ha burned annually for the period 2000 – 2015 

(Monitoring Trends in Burn Severity 2017). To capture areas of forest and the 

surrounding grass and shrublands that provide continuous fuels for fire spread, the 

geographic boundaries of the study site are U.S. Hwy 26 to the north, U.S. Hwy 20 to the 

south with a buffer to the east and west of the Malheur National Forest that ranges 

from approximately 2 – 30 km. 

2.2.2 Overview of simulation model 

Changes in forest and fuel bed characteristics over time were simulated with the 

dynamic FLM LANDIS-II (Scheller et al. 2007), which is widely used to simulate forest 

succession and interactions with disturbances such as fire, harvest, wind, and insects 

(Scheller et al. 2008, Lucash et al. 2014, Duveneck et al. 2014, Kretchun et al. 2014, 

2016, Lucash et al. 2017, Loudermilk et al. 2017). LANDIS-II uses the life history traits of 

tree and shrub species, along with soil and climate data, to simulate successional 

trajectories and responses to disturbances over time. Trees are simulated as species-age 

cohorts, which represent all individual trees of each species as a single group within an 

age range (e.g., for this study trees were grouped into 10-year age cohorts). Each cell 
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represents a simulation site on the landscape of 200 x 200 m (4 ha), in which all forested 

vegetation and topographical conditions are assumed to be homogeneous. Sites can be 

active or inactive, such as in the case of open water or rocky outcroppings. Processes, 

such as reproduction, competition, growth, disturbance, and mortality, are simulated 

both within and between sites (Figure 2.4). LANDIS-II v6.2 was used with the Net 

Ecosystem Carbon and Nitrogen (NECN) succession (v4.2) and the Dynamic Fire and 

Fuels System (v4.0) extensions with outputs including biomass of individual species (i.e., 

as species-age cohorts), fuel types, and fire severity for each individual cell on the 

landscape. The Biomass Harvest (v3.2) extension simulated tree harvest at current levels 

in the southern portions of the Malhuer and Wallowa-Whitman National Forests and 

surrounding forested landscape.  

2.2.3 Model inputs 

2.2.3.1 Ecoregions 

Soil and weather data were used to classify the landscape into 25 ecoregions 

that are assumed to have homogeneous climate and moisture conditions. Soil available 

water was assigned to each cell using SSURGO soil data where they were available; 

where they were not, SSURGO provisional data and Soil Resource Inventory (SRI) data 

(Jay Noller, Chris Ringo, Karen Bennett, unpublished data) were used. Cells were 

reclassified into five soil moisture classes using Natural (Jenks) Breaks in ArcGIS 10.4.1. 

Maximum temperature and average precipitation for growing season months (June, 

July, and August) were obtained as 30-year normals (1980 – 2010; PRISM Climate 



 

16 
 

Group) and reclassified into five climate regions using Iso Cluster Unsupervised 

Classification in ArcMap 10.3 and nested within the soil moisture regions to create the 

final ecoregions as pictured in Figure 2.3a. 

 

Figure 2.4. Conceptual model and dynamic modeling design. Relationships among climate, forest 
structure, forest composition and fuel beds, and fire regimes are complex, operating at multiple 
temporal and spatial scales and with feedbacks. These inter-related factors are modeled in the 
LANDIS-II forest landscape model (FLM), which integrates forest successional dynamics with 
management and disturbance events across space and time. Processes occur within and across 
each 4-ha cell. The NECN Succession extension simulates complex biophysical above and below-
ground processes.  
 

Forest Dynamics 

Forest 
Composition / 

Fuel Beds 

Forest 
Structure 

Climate 

Fire Regime 
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2.2.3.2 Weather Data 

For contemporary weather I used daily weather data retrieved from the USGS 

Data Portal (maximum and minimum temperatures (˚C), average precipitation 

(mm/day), daily average wind speed (m/s; (Maurer et al. 2002), and wind direction 

(degrees clockwise from north; Abatzoglou, 2013) for the period 1979 – 2010, using 

area-weighted grid statistics for each of the five climate regions.  

 For climate change scenarios, bias corrected constructed analogs V2 daily CMIP5 

climate projections for general circulation models (GCMs) from both 4.5 and 8.5 

representative concentration pathways (RCPs) were selected to represent the range of 

climate projections for both moderate and high emissions future trajectories. For the 38 

GCMs with the full range of downscaled data through 12/31/2100 available through the 

USGS Data Portal, slope was calculated for the change in precipitation and maximum 

temperature over the period 2010 – 2100, and I selected the four GCMs with the least 

and greatest slope for both parameters. In order to incorporate the uncertainty in 

future temperature increases and the direction and strength of precipitation trends 

produced by different GCMs, I randomly selected an additional 16 GCMs from those 

remaining for a total of 10 RCP 4.5 models and 10 RCP 8.5 models (Figures 2.5 – 2.7). 

Area-weighted statistics were used to assign daily weather to each of the five climate 

regions. 
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Figure 2.5. General circulation models (GCMs) were selected to represent the hottest/driest, 
hottest/wettest, coolest/driest and coolest/wettest projected conditions from the period 2010 – 
2100. An additional 16 GCMs were randomly selected from those remaining for a total of 10 RCP 
4.5 GCMs and 10 RCP 8.5 GCMs.  

 

 

Figure 2.6. Range of maximum annual temperatures for all RCP 4.5 (orange) and RCP 8.5 (red) 
general circulation models used in simulations. The means are shown in thick lines while the 
range of values are shaded. Temperatures are similar until the fourth decade when they begin 
to diverge with RCP 8.5 temperatures rising more steeply and with greater variability among 
individual climate models.  
 

Summer Temperature Range of GCMs 
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Figure 2.7. Range of annual precipitation for all RCP 4.5 (turquoise) and RCP 8.5 (tan) general 
circulation models used in simulations. The means are shown in thick lines while the range of 
values are shaded. 
 

2.2.3.3 Vegetation 

LANDIS-II simulates tree and shrub competition and regeneration in each site on 

the landscape. As a starting point, initial vegetation communities are assigned to each 

site. Vegetation data were obtained from the Gradient Nearest Neighbor (GNN) maps 

from the Landscape Ecology, Modeling, Mapping and Analysis (LEMMA) group (forested 

areas, Landsat imagery date 2012; https://lemma.forestry.oregonstate.edu/data/home) 

and the GAP Analysis Program’s Ecological Systems map (unforested areas, Landsat 

ETM+ imagery 1999 – 2001); 

https://gapanalysis.usgs.gov/gaplandcover/data/download/). There were 29 tree 

species identified in forested cells, and species that occurred on at least 0.4% of the 

landscape were included in this study (11 species, Table 2.1). These species were 

Summer Precipitation Range of GCMs 

https://lemma.forestry.oregonstate.edu/data/home
https://gapanalysis.usgs.gov/gaplandcover/data/download/
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grouped into species-age cohorts in 10-year bins. There were 4,631 unique communities 

on the landscape, each with up to 11 tree species.  

Non-forest cells were assigned to 44 categories from the GAP Analysis Program’s 

Ecological Systems map and were then grouped into five unique non-forest categories 

based on similar vegetation and fuel characteristics (Disturbed and Invaded Grasslands; 

Perennial Grasslands; Sagebrush Shrublands; Deciduous Shrublands [Not Flammable]; 

and Deciduous Riparian Shrublands [Flammable]) and one inactive category that was 

not simulated (e.g., open water, bedrock and scree). Using NatureServe Explorer 

(http://explorer.natureserve.org/servlet/NatureServe?init=Ecol), 45 shrub species that 

occur in the GAP-identified ecosystem categories in the Blue Mountain region were 

identified and reclassified into functional groups based on whether they 1. are nitrogen 

fixing, 2. resprout after fire, and 3. are shade tolerant (Table 2.2). Non-forested cells 

(e.g., sagebrush shrublands, perennial grasslands, etc.) were assigned cohorts of these 

shrub-groups based on the combinations of individual shrub species that occur in each 

non-forest category. Shrubs were also included in forested cells according to the GNN 

Understory inventory data. Disturbed and Invaded Grasslands and Perennial Grasslands 

were assigned invasive and native grasses respectively in order to provide grass fuel-

types and allow fires to spread through cells that do not contain either trees or shrubs. 

 
 
 
 

http://explorer.natureserve.org/servlet/NatureServe?init=Ecol


 

21 
 

Table 2.1. Species life history trait input parameters. Shade tolerance and fire tolerance are 
ordinal scales where 1 is the least tolerant and 5 is the most tolerant. Shrub category names are 
shortened. See Table 2.2 for descriptions of shrub categories. 

Species 

Max. 
Age 
(years) 

Seed-
ing Age 
(years) 

Shade 
Toler-
ance 

Fire 
Toler-
ance 

Effective 
Seeding 
Distance 
(m) 

Max. 
Seed-
ing 
Dist-
ance 
(m) 

Prob. of 
Resprout 

Min. 
Resprout 
Age 
(years) 

Max. 
Resprout 
Age 
(years) 

Post-Fire 
Regen 

Abies grandis/ 
Abies 
concolor 

300 20 4 3 30 300 0 0 0 none 

Abies 
lasiocarpa 

200 20 5 1 30 80 0 0 0 none 

Cercocarpus 
ledifolius 

600 10 2 2 30 400 0.2 1 120 resprout 

Juniperus 
occidentalis 

1000 50 2 3 2 30 0 0 0 none 

Larix 
occidentalis 

700 25 1 5 100 250 0 0 0 none 

Picea 
engelmannii 

400 30 4 1 90 180 0 0 0 none 

Pinus 
albicaulis 

900 30 3 2 30 5000 0 0 0 none 

Pinus 
contorta 

200 5 2 2 30 300 0 0 0 none 

Pinus 
ponderosa 

600 7 1 4 30 160 0 0 0 none 

Populus 
tremuloides 

150 10 2 2 100 1000 0.9 1 145 resprout 

Pseudotsuga 
menziesii 

300 20 4 3 30 300 0 0 0 none 

Toleresp 60 3 3 1 30 1000 0.85 5 50 resprout 

Intoresp 60 3 2 1 30 500 0.85 5 50 resprout 

Nonnseed 80 5 2 1 30 250 0 0 0 none 

Fixnresp 80 5 1 1 20 250 0.75 5 70 resprout 

Native grasses 100 1 4 1      1000     5000 1.0 0 100 resprout 

Invasive 
grasses 

100 1 4 1        1000 5000 1.0 0 100 resprout 

 

Table 2.2. Shrub categories. Species included in each category are available in the supplemental 
material. 

Category Shade Tolerant Nitrogen Fixing Resprout After Fire 

Toleresp Yes No Yes 

Intoresp No No Yes 

Nonnseed No No No 

Fixnresp No Yes Yes 
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2.2.4 Model parameterization and validation 

2.2.4.1 Forest succession 

The Net Ecosystem Carbon and Nitrogen Succession (NECN) extension in LANDIS-

II includes aboveground and belowground C and N pools that follow the CENTURY soil 

model (Parton et al. 1993). Temperature and precipitation at monthly time-steps control 

vegetation growth and reproduction. Model parameters were obtained from the 

literature and available datasets including the USDA Fire Effects Information System 

(https://www.feis-crs.org/feis/), USGS Vegetation Atlas of North America 

(https://pubs.usgs.gov/pp/p1650-a/), the Northeastern Ecosystem Research 

Cooperative’s Foliar Chemistry Database 

(http://www.nercscience.org/Metadata_FoliarChemistry.html), the National 

Atmospheric Deposition Program (http://nadp.sws.uiuc.edu/NTN/ntnData.aspx), the 

Oak Ridge National Laboratory database 

(https://daac.ornl.gov/SOILS/guides/West_Soil_Carbon.html), and from previous studies 

that utilized LANDIS-II species parameterization (Loudermilk et al. 2014, Lucash et al. 

2014, Creutzburg et al. 2016).  

NECN Succession “spins up” to the start year of the simulation by iterating 

succession at the number of time steps equal to the oldest cohort in each site allowing 

comparison between simulated and observed biomass. Growth and biomass validation 

was accomplished by comparing aboveground tree biomass (total and species-specific) 

with Forest Inventory Analysis (FIA) data. Simulated total biomass ranged from 0 to 105 

http://nadp.sws.uiuc.edu/NTN/ntnData.aspx
https://daac.ornl.gov/SOILS/guides/West_Soil_Carbon.html
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Mg/ha with a mean value of 45 Mg/ha, while biomass estimates from FIA data ranged 

from 0 – 236 Mg/ha with a mean of 45 Mg/ha. These results show that while the model 

did not simulate the full range of variability in total biomass, it sufficiently captured 

average biomass and adequately reproduced tree growth. Validation of each of the 11 

modeled tree species was performed by comparing average species-level biomass, only 

in cells where that species occurs, with GNN data for that species. Out of the 11 tree 

species simulated, nine achieved average biomass within 30% of GNN (Figure 2.8). 

 

Figure 2.8. Initial biomass (g m-2) at time zero as a measure of model validity. LANDIS-II tended 
to slightly underestimate biomass but achieved average biomass within 30% of GNN biomass for 
all but two species (Populus tremuloides and Cercoparpus ledifolius, both which constitute minor 
components of landscape forest composition). 
 

2.2.4.2 Wildfire 

The Dynamic Fire and Fuels extension (Sturtevant et al. 2009) simulated wildfire 

and interactions with climate and fuels. This extension uses the same climate and 
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vegetation as NECN, which allows it to dynamically change fuel beds based on 

vegetation at the corresponding timestep to direct fire spread and severity. Fuel types 

were developed to represent 15 unique combinations of tree species and ages, as well 

as shrublands and grasslands, with individual ignition probabilities and fire behavior 

parameters. Landscape topography was integrated via slope and aspect maps.   

 Fire was calibrated to approximate annual area burned (mean 9,706 ha, median 

615 ha, range of 0 - 81,010 ha, standard deviation 24,481 ha) and fire size (mean 6,933 

ha with a range of 434 – 56,484 ha) for the period 2000 – 2014 in the study area. 

(Multiple small fires with the same wildfire designation were considered one fire.) This 

15-year period was selected because it reflects the most recent fire activity on the study 

landscape allowing calibration of the model to reflect current conditions. Historical fire 

data were retrieved from the Monitoring Trends in Burn Severity database (2016) and 

the USDA Forest Service (Blue Mountains Fire History Polygons, released 2016). 

Simulated fire sizes were first calibrated by limiting the maximum fire size to achieve a 

distribution equivalent to the historical period and to reconstruct fire duration from 

these simulated fires. Calibration simulations were then run as duration-limited, which 

allows for the possibility of larger fires and greater annual area burned reflecting the 

influence of dynamic vegetation and weather over time (Sturtevant et al. unpublished). 

The DFFS extension uses log-normal duration data to generate the distribution of fire 

durations, and this derived duration distribution was then used to calibrate annual area 

burned, which also follows a log-normal distribution. Three replicates of 50 years were 
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run and averaged to validate the calibration, achieving a mean of 10,400 ha burned 

annually with a range of 0 – 134,700 ha (Figure 2.9). 

 

Figure 2.9. Fire calibration was achieved through modeling the distribution of durations of 
individual fires, which follows a log-normal distribution, and calibrating duration to produce a 
log-normal distribution of annual area burned that is similar to the observed distribution. 
Modeled annual area burned has lower variability than observed over the period 2000 – 2014 
but closely matches log-median and range. Boxes encompass mean ±1 standard deviation, solid 
black line is the median, whiskers are the range, blue dotted line marks log-area burned of 12.22 
(equivalent to 202,000 ha or 500,000 acres), which represents a realistic maximum for annual 
area burned under contemporary weather based on historical data for the surrounding region. 
Subtitle contains the parameter inputs for the Dynamic Fire and Fuels System where mu is the 
log-mean of duration, sigma is the standard deviation, max is the maximum duration of an 
individual fire in minutes, and ignitions is a calibrated value that controls the number of ignitions 
expected per year within each ecoregion (ignitions x timestep = λ for the Poisson distribution). 
 

2.2.4.3 Forest management 

The forested landscape of the study area is currently managed according to 

ownership. Harvest on private lands is primarily non-industrial, and harvest on publically 
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managed lands, particularly those managed by the U.S. Forest Service, is generally 

designed to meet multiple objectives (e.g., to promote ecological integrity, social well-

being, and economic well-being (U.S. Department of Agriculture, Forest Service 2014).  

To ensure that simulated management reflects on-the-ground actions, treatment 

prescriptions were developed through a workshop with managers (U.S. Forest Service) 

and expert consultation (Bureau of Land Management, Oregon Department of Forestry). 

The Biomass Harvest extension (v3.2) simulated management including commercial 

harvest, pre-commercial thinning, and prescribed fire. (See Table 2.3 for descriptions of 

prescriptions.) Management was kept constant across scenarios and over the 90-year 

simulation period. 

Table 2.3. Management prescriptions. Management includes harvest of trees, pre-commercial 
thinning and prescribed burning. Modeled prescriptions for U.S. Forest Service lands were 
developed with federal silviculturists and fuels managers. Prescriptions for Bureau of Land 
Management, Oregon State and Private Non-Industrial lands were developed through expert 
consultation. 

Ownership Forest type/Treatment Mean area treated 
per decade (ha) 

Forest Service Ponderosa pine 

Dry mixed conifer  

Combination of commercial harvest and 
restoration thinning followed by 
prescribed fire 

27,000 

Moist mixed conifer 

Combination of commercial harvest and 
restoration thinning 

13,000 

All forest types 

Pre-commercial thinning 

14,000 

Bureau of 
Land 
Management 

Ponderosa pine 

Dry mixed conifer 

1,040 (includes both 
timber sales and 
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and Oregon 
State 

Harvest commercial species (ages 70 – 
140) 

Pre-commercial thin younger cohorts 

stewardship 
contracts) 

Private Non-
Industrial 

Ponderosa pine 

Dry mixed conifer 

Harvest oldest cohorts of commercial 
species 

7,200 

 

2.2.5 Scenarios 

I compared three different scenarios based on climate and replicated each 

scenario 10 times. For the contemporary weather scenario, each simulation year was 

assigned a random year of daily weather data drawn from 1979 – 2010 from the 

Gridded Observed Meteorological Data dataset (Maurer et al. 2002). Climate change 

scenarios included multiple GCMs per scenario in lieu of identical replicates to allow a 

better understanding of the range of future conditions as described above. Each 

scenario represents a possible future, dependent upon the degree to which greenhouse 

gas emissions are or are not curbed over the next 90 years.  

2.2.6 Analysis 

Statistical analysis was completed for annual area burned, fire severity, and 

biomass data. Annual area burned data followed a log-normal distribution, therefore 

analysis was conducted on log-transformed data. Following Bartlett’s test for 

homoscedasticity, analysis of variance and Tukey’s honestly significant difference tests 

were run to differentiate means.  
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Change in biomass was calculated between the start-year and the end-year of 

simulations, and site community change was analyzed with multivariate statistical 

analysis using the vegan package (Oksanen et al. 2017) on one replicate for each climate 

scenario. The contemporary scenario replicate was chosen by a random number 

generator, and I selected the warm/wet RCP 4.5 GCM (CESM1-BGC) and the hot/dry RCP 

8.5 GCM (MIROC-ESM-CHEM). These three replicates were used instead of all 30 

replicates (which constitute 13,050,000 rows of data) because of the processing 

restraints of the R software and the vegan package. To further accommodate 

computational limitations, sites were resampled to a resolution of 1,600 ha and 

assigned the mean biomass of the combined cells.  

To compare relative change in biomass for species composition, regardless of the 

abundance of each individual species, change-in-biomass data were relativized by 

maxima for each replicate, and two outlier sites were removed from analysis. To equally 

utilize change-in-biomass data across the landscape, sites were standardized by totals 

(McCune and Grace 2002). Biomass data were then converted into a Bray-Curtis 

dissimilarity matrix, which accounts for both presence/absence and abundance of 

individual species (Beals 1984), and permutational multivariate analysis of variance 

(PERMANOVA) was employed to identify the relative contributions of fire, temperature, 

precipitation, and other abiotic factors including elevation, slope, and soil type to 

changes in biomass (Anderson 2001). I converted continuous categorical data to z-

scores to avoid weighting their contribution due to unequal scale (e.g., temperature in 
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degrees Celsius and elevation in thousands of feet), and I checked for multicollinearity 

among variables using Spearman’s correlation coefficients and paired scatterplots 

(Figure 2.10). I built a PERMANOVA model via subtraction by starting with all 

explanatory variables and removing the ones that were not significant or that had 

extremely low explanatory power (i.e., that had a low R2 value). Climate scenario was 

included as a blocking term. A final model was built with the strongest variables and 

their interaction terms. 

 

Figure 2.10. Correlation matrix of independent variables used in multivariate analysis of biomass 
change. Scenario is highly correlated with both temperature (R2=0.95) and precipitation (R2=-
0.64), and temperature and precipitation are strongly negatively correlated with each other 
(R2=-0.74). Scenario and number of burns (R2 = 0.42), elevation and soil type (R2 = 0.39), and 
number of burns and temperature (R2=0.34) were moderately correlated. Number of burns was 
weakly correlated with elevation (R2=0.28) and soil type (R2=0.22). There were also weak 
correlations between precipitation and slope (R2=0.26) and elevation (R2=0.20), and between 
slope and elevation (R2=0.29). 
 

Non-metric multi-dimensional scaling (NMDS), which can include co-variates as 

well as both continuous and categorical variables, was used to visualize multivariate 
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responses to significant independent variables (McCune and Grace 2002). Ordination 

was run on the Bray-Curtis dissimilarity matrix with 1,000 iterations and 100 random 

initial coordinates in three dimensions. Convergence was not reached, however this is 

not uncommon for large datasets, and the stress of the final model was satisfactory at 

0.109 (Clarke 1993), which was confirmed with a Shepard Plot (Figure 2.11). All model 

calibration and data analyses were completed in RStudio 1.0.153 using R x64 3.4.1.  

 

Figure 2.11. Shepard plot, which shows the non-metric and linear fit of observed dissimilarity 
and ordination distance for non-metric multi-dimensional scaling. Stress level of 0.109 is 
considered evidence of a good ordination with no real risk of drawing false inferences.  
 

2.3 Results 

2.3.1 Wildfire 

Fire activity is more frequent, more extensive, and more severe under climate 

change than contemporary conditions. Fire rotation period, or the amount of time it 

would take an area equivalent to the size of the entire landscape to burn, was 149.6 
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years under contemporary weather, 94.11 years under RCP 4.5 conditions, and 86.3 

years under RCP 8.5 conditions, reflecting more frequent burning under increasing 

emissions. Annual area burned was generally stable over time under contemporary 

weather with a slight upward trend for the first four decades followed by a slow decline 

in the last sixty years. Under climate change, annual area burned rose for the first six 

decades before strongly declining toward the end of the century, although variability 

increased toward the end of the simulation period (Figure 2.12).  

 

Figure 2.12. Annual area burned over time fitted with a locally weighted scatterplot smoother 
(LOWESS) curve. Area burned was generally stable over time under contemporary weather, but 
area burned increased over time under climate change until the 6th decade when it began to 
decrease. Variability in annual area burned was influenced by individual large events. 

 

Annual area burned was significantly larger under the higher emissions scenario 

than under contemporary climate (p = 0.02). There was no significant difference 

between area burned under the two climate change scenarios, although RCP 8.5 had 
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higher variability (Figure 2.13). On average, 6,272 ha burned per year under historical 

conditions with a range from 0 to 245,016 ha. Under climate change, annual area 

burned averaged 9,970 ha with a range of 0 to 542,212 ha (RCP 4.5) and 10,873 ha with 

a range of 0 to 551,472 ha (RCP 8.5), more than double the most extreme extent of 

wildfire in a single year under contemporary weather. Under climate change, there was 

also an increase in the number of “extreme fire years,” here defined as years with at 

least 40,000 ha (100,000 acres) burned. Under contemporary weather, 3.9% of 

simulation-years were extreme fire years, while under both emissions scenarios, 6% of 

simulated years were extreme.   

 

 

a. 

b. 
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Figure 2.13.  Annual area burned for the last 30 years of simulations under contemporary 
weather and climate change scenarios. Annual area burned under the highest emissions 
scenarios was significantly higher than Contemporary (p = 0.029), and was more variable across 
replicates. The difference between Contemporary and RCP 4.5 was not significant (p = 0.07), and 
there was no difference between the two emissions scenarios (p = 0.98). Boxplots (a.) show the 
greater variability in area burned for the RCP 8.5 scenario. Boxes encompass the 25th and 75th 
percentile and whiskers extend to 1.5 times the interquartile range. Outliers are indicated by a 
circle. The density plot (b.) shows the proportion of years with annual area burned with values 
on the x-axis transformed by the natural log, and log-mean values for each scenario illustrated 
by vertical lines. 
 

 The likelihood of fire at any given site also increased with climate change. Under 

the Contemporary scenario, the mean probability that a single cell would burn in any 

given year was 0.007, under RCP 4.5 it was 0.011, and under RCP 8.5 it was 0.012. 

Additionally, higher probability of burning occurred in the northeastern portion of the 

landscape in all scenarios, but under both climate change scenarios, there was a greater 

likelihood of fire across the landscape, including the central and western portions 

(Figure 2.14).  

 

Figure 2.14. Maps of probability that each individual site will burn during any given year under 
contemporary weather and climate change projections. Scale represents the probability of 
burning of each individual cell over 90 years and 10 replicates.  Fire is more likely across a 
greater proportion of the landscape under increasing emissions scenarios, especially in the 
northeast portion, of the landscape.  
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Fire severity was higher under climate change (p = 0.02) than contemporary 

weather (mean severity 3.22), but did not differ between RCP 4.5 and 8.5 (mean 

severity 3.4 and 3.39 respectively, Figure 2.15). Under climate change, 81.6 - 83.7% of 

the landscape burned with a high severity fire (severity of 4-5) at least once, while under 

historical conditions, only 58.9% did. The highest severity fires occurred most often in 

the north-eastern portion of the landscape in forests dominated by high-elevation 

species (sub-alpine fir, whitebark pine, Engelmann spruce; Figure 2.16). Outside of 

forested areas, fires were typically high-severity as measured by the LANDIS-II model 

(i.e., though a combination of the fire’s rate of spread and potential mortality), however 

as those areas are shrub and grass-dominated, and therefore contain fuel types that are 

highly flammable, these high severity fire were expected. 
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Figure 2.15. Mean fire severity under contemporary weather and climate change projections 
averaged across 10 replicates for each scenario. Fire severity was significantly higher for climate 
change scenarios than Contemporary (p = 0.02), but there was no difference between RCP 4.5 
and RCP 8.5 scenarios (p = 0.98). In the boxplot (a.), boxes encompass the 25th and 75th 
percentiles and the solid line represents the median. Whiskers extend to 1.5x the inner quartile 
range. The density plot (b.) shows the shift in distribution of fire severities under climate 
change, which have a greater proportion of fire severities in the range of 2.5 – 3.5 and greater 
than 4.2 than under contemporary weather.  

 

a. 

b
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Figure 2.16. Maps of mean fire severity averaged across all replicates and all years for each 
climate scenario. Mean fire severity was higher under climate change, and the highest severity 
fires occurred in the northeastern portion of the landscape. The highest mean severity was in 
forest dominated by high-elevation species (e.g., sub-alpine fir, whitebark pine, Engelmann 
spruce). Shrublands and grasslands also burned at high severity, reflecting the high potential 
mortality of shrub and grass species. 
 
Table 2.4. Wildfire metric results. Mean severity is averaged across all years. Annual area burned 
is reported for all years and for the last 30 years. Standard deviation is in parentheses. 

 Historical RCP 4.5 RCP 8.5 

Mean Severity 3.22 (0.16) 3.40 (0.11) 3.39 (0.15) 

Mean Annual Area 
Burned (All Years) 

6,272 ha (20,152) 9,970 ha (36,312.62) 10,876 ha (37,849) 

Mean Annual Area 
Burned (Last 30 
Years) 

4,663 ha (13,724) 7,249 ha (26,371) 9,633 ha (33,433) 

Fire Rotation 
Period 

150 years 94 years 86 years 

 

2.3.2 Forest dynamics 

Aboveground biomass increased over time under all scenarios (Contemporary 

+23.3%, RCP 4.5 +23.7%, RCP 8.5 +23.5%), and there was no difference in the change in 

total biomass among scenarios (F = 0.016, p = 0.98; Figure 17). However, biomass 

density and spatial distribution differed among species and among contemporary and 

climate change scenarios (see Table 5). The four most common species on the landscape 
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- ponderosa pine, grand fir, Douglas fir and western juniper - all increased in landscape-

level average biomass over time under all scenarios except western juniper, which 

increased under contemporary weather but maintained or lost biomass under climate 

change. The biomass of less common high-elevation species, including sub-alpine fir, 

Engelmann spruce, and whitebark pine, declined under all scenarios, while lodgepole 

pine and western larch gained biomass under contemporary weather but declined 

under climate change.  
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Contemporary 
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Figure 2.17. Average total biomass and biomass of individual species through time for each 
climate scenario. Biomass is averaged across all 4-ha sites on the landscape, including sites 
where a given species does not occur, in order to reflect both changes in biomass density and 
extent among species at the landscape level. Aboveground biomass increased under all 
scenarios, which was driven by increasing ponderosa pine, grand fir and Douglas fir biomass and 
extent. Lodgepole pine, western juniper and western larch increased under contemporary 
weather but declined under climate change, and high-elevation species (sub-alpine fir, 
Engelmann spruce, and whitebark pine) declined under all scenarios. 
 

Landscape-level biomass change was influenced by two factors: density of 

species in sites where they occur (Figure 2.18, Table 2.5) and extent across the 

landscape. Ponderosa pine responded favorably to climate change and increased in both 

biomass density and extent with the greatest increases in both under climate change. 

Grand fir increased in density under climate change and extent under all scenarios, 

although its range did not increase as much under climate change as under 

contemporary weather. Douglas fir’s overall increase in biomass was due to an increase 

in extent, which was greatest under contemporary weather, however, site-level density 

declined under all scenarios. Conversely, western juniper’s density increased over time 

while experiencing range contraction under all scenarios, indicating that while some 

juniper stands were removed by senescence and wildfire that allowed ponderosa pine 

to establish, growth and reproduction in the stands that remained outpaced mortality. 
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Figure 2.18. Average percent change in biomass density. Boxplots show the percent of simulated 
biomass change from 2010 to 2100 for all modeled conifer species averaged across sites where 
each species occurs. The horizontal line indicates no change in density over the 90-year 
simulation period. Ponderosa pine and western juniper density increased under all scenarios. 
Grand fir and western larch density decreased under contemporary weather, changed little 
under moderate climate change, and increased under RCP 8.5. Douglas fir density decreased 
under all scenarios, while lodgepole pine density varied among replicates. Sub-alpine fir, 
Engelmann spruce, and whitebark pine density declined under all climate scenarios, although 
whitebark pine was the most variable with increases in density of up to 30% and decreases of up 
to 24% under individual RCP 8.5 replicates. 
 

Two species, western larch and lodgepole pine, did not experience large changes 

in either density or extent regardless of climate scenario. Western larch, which currently 

occurs on about 14% of the landscape, decreased slightly in extent (to 11-12%) but 

increased slightly in density (by 1-3%). Lodgepole pine density remained steady under 

contemporary and moderate climate change conditions (-4% to +1%), and extent 

Historical 

RCP_4.5 

RCP_8.5 

Contemporary 
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changed by only 2-3%, increasing under contemporary climate and either staying the 

same or decreasing under climate change. 

High-elevation species, including Engelmann spruce, sub-alpine fir, and 

whitebark pine, declined under all scenarios with the greatest declines under RCP 8.5. 

Over the 90-year period, sub-alpine fir and Engelmann spruce density declined by more 

than 75%. However, under contemporary weather and moderately hotter/drier 

conditions, their range expanded slightly, indicating that even though existing stands 

were being replaced by other species or converted to non-forest following senescence 

and disturbance, seed dispersal and reproduction were still occurring. Under the hottest 

and driest conditions, however, extent declined. Whitebark pine, which currently 

inhabits sparse stands on only a small portion of the landscape (0.4%), declined in both 

density and extent under all scenarios. Density in stands where it persisted decreased 

the least under climate change, but its range contracted to 0.03% – 0.07%, virtually 

disappearing from the landscape.  

Table 2.5. Biomass density and extent values for all conifer tree species. Individual species 
biomass is averaged only in sites where that species occurs. Increases in density and extent over 
time are in white; decreases are in gray. Climate change scenarios are shortened to CC – 
Moderate (RCP 4.5 emissions scenario) and CC – High (RCP 8.5 emissions scenario). Standard 
deviations are given in parentheses. 

Species 
Climate 
Scenario 

Biomass (g m-2) 
Extent (% of 
landscape) 

  Start End % Change Start % End % 

Pinus 
ponderosa 
 
Ponderosa 
pine 

Contemporary 3628 
3814 
(60) 

+5.1% 
(1.6%) 

57.9% 
68.0% 
(1.0%) 

CC - Moderate 3628 
3841 
(37) 

+5.9% 
(1.0%) 

57.9% 
70.9% 
(1.5%) 
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CC - High 3628 
3890 
(74) 

+7.8% 
(2.0%) 

57.9% 
71.6% 
(1.1%) 

Abies grandis  
 
Grand fir 

Contemporary 2977 
2791 
(78) 

-6.2% 
(2.6%) 

27.2% 
43.3% 
(2.6%) 

CC - Moderate 2977 
3160 
(210) 

+6.1% 
(7.0%) 

27.2% 
37.9% 
(2.6%) 

CC - High 2977 
3504 
(294) 

+17.7% 
(9.9%) 

27.2% 
34.0% 
(3.5%) 

Pseudotsuga 
menziesii  
 
Douglas fir 

Contemporary 1831 
1564 
(13) 

-14.6% 
(0.7%) 

36.0% 
46.0% 
(1.2%) 

CC - Moderate 1831 
1666 
(39) 

-9.0% 
(2.15%) 

36.0% 
44.6% 
(1.8%) 

CC - High 1831 
1720 
(66) 

-6.0% 
(3.6%) 

36.0% 
43.6% 
(2.2%) 

Pinus 
contorta 
 
Lodgepole 
pine 

Contemporary 1160 
1176 
(61) 

+1.3% 
(5.3%) 

12.5% 
15.5% 
(0.9%) 

CC - Moderate 1160 
1112 
(98) 

-4.1% 
(8.4%) 

12.5% 
12.8% 
(1.2%) 

CC - High 1160 
979 
(163) 

-15.6% 
(14.1%) 

12.5% 
10.8% 
(1.6%) 

Juniperus 
occidentalis  
 
Western 
juniper 

Contemporary 555 
856 
(23) 

+54.2% 
(4.1%) 

42.2% 
35.9% 
(2.1%) 

CC - Moderate 555 
819 
(55) 

+47.6% 
(9.8%) 

42.2% 
30.5% 
(4.3%) 

CC - High 555 
803 
(45) 

+44.8% 
(7.9%) 

42.2% 
29.3% 
(4.9%) 

Larix 
occidentalis 
 
Western larch 
 

Contemporary 1282 
1201 
(26) 

-6.4% 
(2.0%) 

13.76% 
15.5% 
(0.5%) 

CC - Moderate 1282 
1299 
(54) 

+1.3% 
(4.2%) 

13.76% 
12.2% 
(0.8%) 

CC - High 1282 
1323 
(47) 

+3.2% 
(3.6%) 

13.76% 
11.36% 
(0.9%) 

Abies 
lasiocarpa 

Contemporary 1265 
161 
(36) 

-87.2% 
(2.9%) 

1.9% 
4.6% 
(1.0%) 
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Sub-alpine fir  
 

CC - Moderate 1265 
201 
(103) 

-84.1% 
(8.12%) 

1.9% 
2.0% 
(0.9%) 

CC - High 1265 
208 
(70) 

-84.0% 
(5.5%) 

1.9% 
1.2% 
(0.5%) 

Picea 
engelmannii 
 
Engelmann 
spruce 

Contemporary 1387 
328 
(59) 

-76.3% 
(4.2%) 

2.2% 
5.0% 
(1.3%) 

CC - Moderate 1387 
324 
(83) 

-76.6% 
(6.0%) 

2.2% 
3.2% 
(1.2%) 

CC - High 1387 
364 
(102) 

-74.8% 
(7.3%) 

2.2% 
2.1% 
(1.0%) 

Pinus 
albicaulis 
 
Whitebark 
pine 

Contemporary 541 
229 
(81) 

-57.7% 
(14.9%) 

0.40% 
0.23% 
(0.2%) 

CC - Moderate 541 
429 
(145) 

-20.8% 
(26.8%) 

0.40% 
0.07% 
(0.08%) 

CC - High 541 
535 
(95) 

-1.2% 
(17.5%) 

0.40% 
0.03% 
(0.02%) 

 

The degree to which climate conditions facilitated establishment of individual 

species, both within sites and by dispersing to neighboring sites, was measured through 

probability of establishment, an internal calculation within the NECN succession 

extension (Figure 2.19). Probability is based on growing degree days, drought tolerance, 

and minimum January temperatures. For each of the high-elevation species, the 

probability of establishment under climate change fell throughout the century. Western 

larch, which lost biomass under climate change reflecting its preference for moister, 

shadier locations, also saw establishment decline under climate change. In contrast, dry-

mixed conifer species that increased in overall biomass, including ponderosa pine and 

Douglas fir, maintained high probability of establishment throughout the century with 

the RCP 8.5 scenario providing the most favorable conditions for establishment. 
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Western juniper also maintained a high probability of establishment under all climate 

scenarios, which allowed density to increase within sites through regeneration. While 

grand fir’s probability of establishment fell to around 0.1 under the RCP 8.5 scenario, 

about one third of that of ponderosa pine, it still expanded in extent over time. 
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Figure 2.19. Probability of establishment of conifer species under each climate scenario. Species 
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that generally increased biomass over time are in solid lines. Species that generally maintained 

biomass over time are in dashed lines. Species that lost biomass over time are in dotted lines.  

 

2.3.3 Abiotic factors and biomass 

 After accounting for climate scenario as a blocking term in the PERMANOVA 

model, the most influential abiotic factors in biomass change were the number of times 

a cell burned over the 90-year simulation period, elevation, and slope as well as the 

interactions among these three variables (Table 2.6). Between them, they account for 

26.8% of the variation in community biomass change. Within-scenario differences in 

temperature were not a significant driver of changes in biomass (R2 = 0.004, p = 1.0). 

While precipitation did affect biomass change, it was significantly correlated with 

scenario (r = -0.64), and the within-scenario differences in precipitation explained only 

an additional 2% of variation. Soil type explained very little (0.7% of variation), and was 

removed from the model. The final PERMANOVA model was Biomass Change ~ 

Burns*Elevation*Slope. 

Table 2.6. Results from permutational multivariate analysis of variance (PERMANOVA). In the 
full model, only the most influential interaction terms are reported. 

 Degrees of 
Freedom 

Sum of 
Squares 

F Model R2 P-value 

 Full Model: Change in Biomass ~ Number of 
Burns*Elevation*Slope*Precipitation*Temperature*Soil Type 

Number of Burns 1 0.3895 248.372 0.06587 0.001* 

Elevation 1 0.2801 178.618 0.04737 0.001* 
Slope 1 0.1217 77.618 0.02058 0.001* 

Precipitation 1 0.0938 59.836 0.01587 0.001* 

Temperature 1 0.0255 16.235 0.00431 1.000 

Soil Type 1 0.0435 27.750 0.00736 0.001* 
Burns:Elevation 1 0.1838 117.222 0.03109 0.001* 
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Burns:Slope 1 0.2186 139.414 0.03697 0.001* 
Elevation:Slope 1 0.0734 46.819 0.01242 0.001* 

Burns:Elevation:Slope 1 0.2345 149.531 0.03966 0.001* 

 Best Model: Change in Biomass ~ Number of 
Burns*Elevation*Slope 

Number of Burns 1 0.4052 206.463 0.06869 0.001* 
Elevation 1 0.3534 180.050 0.05990 0.001* 

Slope 1 0.0720 36.691 0.01221 0.001* 

Burns:Elevation 1 0.4342 221.217 0.07359 0.001* 

Burns:Slope 1 0.714 36.356 0.01209 0.001* 
Elevation:Slope 1 0.1201 61.193 0.02036 0.001* 

Burns:Elevation:Slope 1 0.1235 61.193 0.02036 0.001* 

Residuals 2201 4.3200  0.73223  

Total 2208 5.8998  1.0  
 

2.4 Discussion 

Average temperatures in the northwestern United States have risen by about 1 

degree Celsius in the last century, and an additional increase of 1.8 – 5.4 degrees C is 

expected by the end of the century (USGCRP et al. 2014). Projected changes in 

precipitation range across GCMs from around -11% to +18%, but climate models 

consistently project decreases in summer precipitation and a greater proportion of 

winter precipitation falling as rain instead of snow, leading to lower snowpack, earlier 

snowmelt, and reduced streamflow (Hamlet et al. 2007, Mote and Salathé 2010, 

USGCRP et al. 2014). This study’s findings of increases in simulated fire frequency, 

annual area burned, and severity reflect the Southern Blue Mountain region’s 

vulnerability to these changes in climatic drivers of fire. To capture the uncertainty 

around temperature and precipitation shifts projected by various GCMs, I used a range 

of conditions encompassing the most and least extreme scenarios in simulations. The 
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consistent pattern of increased fire activity under this range of climate conditions is 

clear, although the differences among moderate and high emissions climate scenarios 

were not significant. This serves to underscore an important point: fire activity 

accelerates under a wide range of projected conditions. Therefore, uncertainty around 

the amplitude of temperature and precipitation changes should not be a reason to stall 

decision-making around forest management. 

In order to observe the influence of dynamic changes in forest composition 

linked both to climate mediators of growth and reproduction and to mortality from 

wildfire, I held management constant across simulations. Changes in forest composition 

altered fuel beds over time, which led to a feedback in subsequent wildfire activity. The 

temporal pattern of area burned is evidence of this interaction. Area burned was 

generally stable over time under contemporary weather conditions, while under climate 

change, annual area burned increased for the first fifty-five years but declined during 

the subsequent half of the century. In contrast, total biomass increased steadily over 

the entire century under all climate scenarios, but forest composition, and therefore 

fuel beds, shifted through species-specific changes in biomass density and extent. High-

elevation, fire-sensitive species that typically experience high mortality during wildfire, 

including sub-alpine fir and Engelmann spruce, declined during the second half of the 

century, coincident with a trend of declining area burned. Whitebark pine, an early-

successional conifer found at high elevations, maintained higher density relative to sub-

alpine fir and Engelmann spruce under climate change, which is consistent with its 
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higher drought tolerance and advantageous regeneration strategy following wildfire 

(Sala et al. 2001). However, whitebark pine has already been largely replaced by these 

later-successional species following decades of fire suppression, as it relies on seed 

caching in fire-opened patches by Clark’s nutcracker. Its loss in extent over all scenarios 

reflects this legacy of a lack of seed source (Lillybridge et al. 1995). In addition, the 

larger, more severe fires under climate change do not emulate the infrequent stand-

replacement fires and the patches of high-severity within larger mixed-severity fires that 

historically supported whitebark pine establishment and the low to moderate severity 

fires that reduced competition from co-occurring species (Perkins et al. 2016).  

These patterns in biomass shifts occurred under all climate scenarios, however, 

there is more uncertainty and a potential for shifts of greater magnitude under hotter 

and drier climate conditions (Figure 2.20). As shown in Figure 2.21, biomass reductions 

were greatest in high-elevation sites, which is consistent with state-and-transition 

modeling studies that projected losses in sub-alpine forests in eastern Oregon under a 

range of climate change models (Halofsky et al. 2013). Species distribution research 

(Mathys et al. 2017) also found range constriction and increased stress under climate 

change for whitebark pine, sub-alpine fir, and lodgepole pine. While the latter study did 

not account for wildfire, they found that lodgepole pine distribution is limited by both 

high summer temperatures and soil water deficit from insufficient snowmelt, which is 

consistent with this study’s finding of reduced biomass density and extent under climate 

change. In some ecosystems, the increase in high-severity wildfire under climate change 
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could lead to successful post-fire lodgepole pine regeneration from seed stored in 

serotinous cones (Anderson 2003), however, most lodgepole pines in the study area 

produce non-serotinous cones (Crowe and Clausnitzer 1997) and do not gain a 

competitive edge from the increase of wildfire activity.  

 

Figure 2.20. Non-metric multi-dimensional scaling (NMDS) ordination of change in biomass for 
the nine conifer species by weighted species scores. Species closer together in ordination space 
tended to gain or lose biomass similarly over time. Hulls enclose the extent of sites in ordination 
space for each climate scenario. Under all scenarios, biomass was gained or lost similarly, but 
there was greater variability under the RCP 8.5 emissions scenario. Axes are dimensionless. 
(abielasi = grand fir, pinualbi = whitebark pine, piceenge = Engelmann spruce, juniocci = western 
juniper, abiegran = grand fir, pinucont = lodgepole pine, pinupond = ponderosa pine, pseumenz 
= douglas fir, lariocci = western larch). 
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Figure 2.21. Non-metric multi-dimensional scaling (NMDS) ordination of change in biomass of six 
tree species across the elevational gradient. Sites with similar biomass change across species are 
clumped closer together while sites that differ in their degree of biomass change are further 
apart. Axes are dimensionless. Elevation increases from left to right, and lower-elevation sites 
tended to be more similar to each other than to high-elevation sites. The top plot shows high-
elevation species (whitebark pine, sub-alpine fir, and Engelmann spruce), which declined the 
most at high elevations, coincident with high repeat numbers of burns. The size of each point is 
scaled by the degree of biomass decline. The bottom plot shows expansion of biomass for the 
species that increased in biomass across all scenarios (ponderosa pine, grand fir, and Douglas 
fir), and the size of each point is scaled by the degree of biomass increase. These species 
increased at a fairly equal rate across the landscape regardless of elevation. 
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Increases in biomass and extent of ponderosa pine and Douglas fir are also 

consistent with previous research. Halofsky et al. (2013) found that temperate needle 

leaf forest (ponderosa pine, lodgepole pine, and dry mixed conifer forests including 

Douglas fir and grand fir) either maintained or increased extent under climate change 

scenarios, while Mathys et al. (2017) found that Douglas fir and ponderosa pine may 

benefit from climate change in some locations. Increased ponderosa pine dominance 

has also been projected on the order of 5-10% in inland Oregon based on physiological 

modeling (Coops et al. 2005) with the conclusion that lower snowpack in the sub-alpine 

zone may lead to range expansion into higher elevations. Additionally, ponderosa pine’s 

resistance to wildfire and legacy of dominance on the study landscape give it a 

competitive advantage both in persistence and regeneration.  

The mechanisms behind increases in grand fir density and extent under climate 

change are less clear. Grand fir’s probability of establishment declines under climate 

change and its susceptibility to fire is higher than either ponderosa pine or Douglas fir, 

yet biomass increases under all scenarios with regeneration making up 3-25% of total 

simulated grand fir biomass under the highest emissions scenario. While grand fir is 

generally found in moist sites, it is also the most drought-tolerant fir in the Pacific 

Northwest (Howard and Aleksoff 2000) and can establish and survive on a range of sites 

from warm and moderately dry to moist (Lillybridge et al. 1995). It is moderately fire 

resistant once it reaches maturity (Howard and Aleksoff 2000) but generally only 

dominates in areas where fire has been excluded, because grand fir regeneration and 
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young cohorts create high fuel loadings that result in high mortality from fire (Habeck 

and Mutch 1973). The shift from fire-susceptible to fire-resistant species in higher 

elevations could facilitate this expansion of grand fir by moving toward a lower severity 

fire regime associated with ponderosa pine-dominated forests over time. However, it is 

also possible that there is an overestimation of grand fir regeneration or an 

underestimation of mortality that may influence simulated grand fir biomass shifts over 

time. 

These shifts in species composition characterize a decline in rare species on the 

landscape and forest homogenization at high elevations. This biomass change was 

experienced most in areas that were burned repeatedly and especially at high elevation 

and on steep slopes. While increases in ponderosa pine may lead to an increased 

landscape-level resilience, or ability to remain in the same state following wildfire 

(Carpenter et al. 2001), a reduction in heterogeneity of species composition on the 

landscape has other far-reaching effects, both ecologically and socially. Biodiverse 

landscapes are more resilient to disturbance through providing functional redundancy 

(Oliver et al. 2015), varying the effects of individual disturbances from patch to patch as 

well as providing variable responses to different disturbances (e.g., windthrow, insect 

infestations, disease; Folke et al. 2004).  They also provide a variety of wildlife habitat, 

natural resource, and recreation environments that produce a broad range of 

ecosystem services. It is up to land managers and local communities to consider 
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whether it is of high priority for them to intervene to slow the inevitable conversion of 

cool mixed-conifer forest at high elevations to ponderosa-pine dominated forest. 

2.4.1 Limitations 

This study employed a dynamic forest landscape model, which was carefully 

parameterized and calibrated. As with any study that employs modeling, there are 

limitations and uncertainty associated with the model. The number of ecological 

processes that can be included are limited by the model itself and by time limitations. In 

this case, I employed model extensions to simulate forest succession (seed dispersal, 

reproduction, growth, competition, age-related mortality), harvest (mechanical tree 

removal and prescribed fire), and wildfire. I did not include wind disturbance or insect 

damage, but I included estimated mortality associated with these disturbances by 

calibrating the model’s simulated background mortality with empirical data and expert 

consultation (M. Jennings, personal communication, February 14, 2017). Uncertainty is 

also introduced through the parameterization of the model; for instance, vegetation, 

temperature, precipitation, and soil characteristics are derived from point sources that 

have been imputed to a 4-ha resolution, thereby introducing error. However, a study at 

this scale (approximately 1 million ha) attempts to identify broad spatial and temporal 

trends and approximations from site-level data are sufficient for this purpose.  

Stochasticity in modeled disturbance can also introduce uncertainty as 

interactions between forest succession and disturbance can lead to a range of outcomes 
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over the simulation period. To minimize this uncertainty, I have run 10 replicates of 

every scenario and reported mean values across replicates. 

2.5 Conclusions 

GCMs consistently project hotter temperatures, a greater proportion of 

precipitation falling as rain rather than snow, earlier snowmelt, and longer fire seasons 

in the western U.S. (Scholze et al. 2006, Littell et al. 2009). This study, which looked at 

the effects of those changes on wildfire activity and forest dynamics in the inter-

mountain west, found that even with uncertainty about the magnitude of future 

climatic trends, wildfire extent and severity will be more extreme than what this 

landscape has experienced in the recent past. Changes in forest composition will be 

driven by changes in the fire regime with feedbacks through modification of fuel beds. 

The greatest impacts of climate change on this landscape occur at high elevations where 

sensitive species will be replaced by migration of tree species typically found at lower 

elevations following wildfire and due to limitations to establishment under drier 

conditions. These findings underscore the critical need for forest managers to actively 

consider climate change, shifting fire regimes, and social and ecological priorities around 

managing for rare species in their long-term management plans.  
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Chapter 3 - Optimizing placement of fuel treatments and accelerating prescribed fire 
ameliorates extreme weather-driven wildfires in western mixed-conifer forests 
 

3.1 Introduction and background 

Wildfire in the western United States is burning more area annually than 

previously recorded in the modern period (Westerling et al. 2006a, Littell et al. 2009). 

Increased temperatures and greater variability in precipitation resulting from climate 

change are leading to longer fire seasons with fire-conducive weather and low fuel 

moisture. This has led to a greater number of wildfires that escape suppression efforts, 

and this trend is projected to continue (Whitlock 2003, Westerling et al. 2006a, Fried et 

al. 2008).  Land management agencies are tasked with the protection of resources from 

wildfire, which they balance with multiple objectives such as preserving wildlife habitat, 

facilitating recreation, and economic concerns. Agencies such as the USDA Forest 

Service (USFS) want to accelerate the pace of restoration to both increase the resiliency 

of forests to disturbance and provide jobs in rural communities (USDA Forest Service 

2012). Forest and landscape restoration is often used to achieve multiple objectives 

while modifying forest stand structure to better resist fires by reducing fuel beds and 

providing fuel breaks. However, the cost of fire suppression has more than quadrupled 

over the past 30 years, with federal spending topping $2 billion in 2015 (NIFC 2016) and 

expending 50% of agency budgets (North et al. 2015), which has led to an imbalance in 

available funds for preventative fire management. Given financial constraints, it is 
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critical that preventative forest management actions, specifically fuel treatments, be 

planned and implemented efficiently and effectively.  

Previous studies have shown that fuel treatments in dry mixed-conifer forests 

are effective in reducing wildfire severity when wildfires intersect existing treatments 

(Prichard et al. 2010, Johnson et al. 2011, Syphard et al. 2011a, Safford et al. 2012), and 

that combining mechanical thinning with prescribed burning can be more effective than 

each treatment type alone (Schwilk et al. 2009). Studies that used modeling to 

understand fuel treatment effectiveness have also projected improved fire resistance in 

forests that are managed to reduce fuels (Fulé et al. 2001, Ager et al. 2010, Johnson et 

al. 2011, Halofsky et al. 2014, Loudermilk et al. 2014).  

Several factors may determine the degree to which fuel treatments are effective 

in reducing the size and severity of wildfires: the type and intensity of the treatment 

(i.e., how much biomass is removed and how slash is managed; Schwilk et al. 2009), the 

spatial placement and configuration of fuel treatments across the landscape (Kim et al. 

2009, Duncan et al. 2015), the time since treatment (Rhodes and Baker 2008), and the 

weather conditions at the time of a fire (e.g., wind speed and direction, relative 

humidity, recent precipitation amounts; Gedalof et al. 2005, Westerling et al. 2006, 

Stephens et al. 2012).  During extreme weather conditions, fuel treatments are less 

effective at the site level because of the overriding effect of strong winds, low 

precipitation, low relative humidity, and rapid drying times of fuel beds (Gedalof et al. 

2005, Krawchuk and Moritz 2011). However, the increased incidence and spread of 
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wildfires during extreme weather events lead to a greater likelihood that wildfire will 

intersect treatments, which makes treatments more effective at the regional scale than 

during more moderate weather. In addition, other factors, such as topographic 

characteristics (e.g., slope, aspect, and elevation), biotic conditions (e.g., tree and shrub 

species assemblages) and development (e.g., distance from roads or structures) can 

influence fire spread and behavior as well as the effects of a given fuel treatment on 

subsequent wildfire activity (Bessie and Johnson 1995, Prichard and Kennedy 2014).  

Planning for forest management under extreme weather conditions in fuel-

driven fire systems is critical because fires that occur during these conditions are likelier 

to escape suppression efforts (Fried et al. 2008) while also being more extensive and 

more severe than those during years with more moderate weather (Bessie and Johnson 

1995). In addition, site-level planning is not sufficient; forest management plans should 

acknowledge the interaction of patterns and processes across entire landscapes, 

allowing for and creating shifting mosaics of forest and non-forest patches while 

maximizing the likelihood that wildfire will intersect treatments. Often, only a small 

percentage of treatments intersect with a wildfire within the period of time that the 

altered forest structure can still influence wildfire behavior (Barnett et al. 2016), and 

spatially optimizing treatments in areas of high fire risk can mitigate the relative risk of 

fire (Finney 2007, Krofcheck et al. 2017b) while minimizing cost due to the smaller 

portion of the landscape under treatment. Additionally, applying prescribed fire without 
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mechanical treatments has been found to be effective in modifying fuel beds by 

reducing sapling and shrub density and wood surface fuels (McIver et al. 2013).  

Therefore, I sought to understand the effects of fuel treatments (e.g., mechanical 

thinning and prescribed burning) in a fire-prone, dry mixed-conifer landscape on annual 

area burned, fire frequency, and fire severity. Specifically, I addressed the following 

questions: 

1. Given a set amount of mechanical thinning on a landscape, does treating 

additional area with prescribed fire change the effects of an overall fuel 

treatment plan? 

2. If mechanical and prescribed fire treatments are allowed in Riparian Habitat 

Conservations Areas, will wildfire severity and spread be reduced? 

3. How will the effects of fuel treatments on wildfire activity change under 

extreme weather conditions?  

4. Is spatial optimization of fuel treatments as effective as distributed placement 

at reducing wildfire extent and severity? 

To answer these questions, I used a spatially dynamic forest landscape model 

(FLM) to compare outcomes among different fuel treatment scenarios and under 

different climate conditions over time. By simulating complex interactions among 

multiple ecological processes (e.g., plant establishment, competition and mortality, seed 

dispersal, climate variation and changes over time, and disturbances), FLMs can improve 

upon the predictive ability of empirical studies and statistical models while allowing for 
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spatial variation in conditions, changing conditions through time, and allowing for 

emergent behavior, e.g. novel conditions (Williams and Jackson 2007). Carefully 

calibrated FLMs allow forest conditions and disturbance regimes to emerge through 

simulation and are not constrained by pre-defined states, which facilitates 

understanding not only beginning and ending points, but continuous trajectories of 

forest conditions through time (Gustafson 2013). In the case of this study, a modeling 

approach also allows forcing extreme weather conditions in order to simulate an 

accelerated frequency of wildfire disturbance. This allowed me to test the effectiveness 

of fuel treatments on reducing wildfire spread and severity over a much greater number 

of extreme fire events than has been historically observed on this landscape. 

3.2 Methods 

3.2.1 Study area 

The study site is located in the southern part of the Blue Mountains (see Chapter 

2, Figure 2.1), covering 938,786 ha, of which 666,330 ha are forested, 34,232 ha are 

potential forest (e.g., recently clear-cut harvested or burned), and 238,224 ha are 

grasslands and shrublands (LEMMA, 2014). Elevation ranges from 719 – 2,744 meters 

above sea level. Climate in the Blue Mountains is continental with cold, wet winters and 

hot, dry summers. Mean January and June temperatures are -3 °C and 19.3 °C 

respectively (1981 – 2010; NOAA 2016, average of 9 weather stations within the study 

area) with average annual precipitation of 364 mm (1979 – 2014; Abatzoglou 2013), 

most of which falls as snow (Heyerdahl et al. 2002, NOAA 2016). There is an increase in 
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average summer precipitation (47 – 55 mm) and a corresponding decrease in average 

summer temperatures (27 – 25 °C) from the southwest to the northeast of the study 

area. Climate fluctuations are influenced by the El Niño-Southern Oscillation (ENSO) 

phenomenon, which is linked to cyclic rising and falling of sea-surface temperatures in 

the equatorial Pacific Ocean (NOAA 2005). In the Pacific Northwest region, El Niño years 

are characterized by hot and dry winters and springs (Cayan et al. 1999, Heyerdahl et al. 

2002), which in the Blue Mountains is reflected as less than normal snowpack. Dry 

summer lightning storms are frequent throughout the southern Blue Mountains, and 

aspect is important in driving moisture and temperature. South-facing slopes have 

higher surface temperature and lower relative humidity than north-facing slopes, 

especially on steep slopes (>50%; Heyerdahl et al. 2001).  

Forest association zones in the Blue Mountain region are Juniperus occidentalis, 

Pinus ponderosa, Abies grandis and Abies lasiocarpa (Franklin and Dyrness 1973). 

Current forested communities consist primarily of dry Pinus ponderosa (ponderosa pine) 

and dry mixed-conifer, which is dominated by a mix of ponderosa pine, Pseudotsuga 

menziesii var. glauca (rocky mountain Douglas fir here-after referred to as Douglas fir), 

Abies grandis (grand fir), and Larix occidentalis (western larch). Juniperus occidentalis 

(western juniper) is present in both forest types, although it is not dominant. At higher 

elevations, Abies lasiocarpa (sub-alpine fir), Pinus contorta var. latifolia (lodgepole pine) 

and Picea engelmannii (Engelmann spruce) are present, and both Pinus albicaulis 

(whitebark pine) and Pinus monticola (western white pine) are found in limited 
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populations. Riparian areas contain Populus tremuloides (trembling aspen) as well as 

deciduous shrub species (e.g., Vaccinium spp., Salix spp.) and encroaching young 

conifers resulting from fire suppression, ungulate browse, and a lowered water table 

(Dwire et al. 2017) as well as scattered relict conifers greater than 120 years of age. Both 

low and high-elevation shrublands are dominated by Artemesia spp. (sagebrush) and 

Purshia tridentata (antelope bitterbrush; LEMMA, 2014).  

This area experiences frequent wildfires and is shaped by a legacy of commercial 

timber harvest (Heyerdahl and Agee 1996) as well as large-scale restoration efforts 

(USDA Forest Service, Malheur National Forest 2015), making it an appropriate case 

study to examine the comparative effects of current and accelerated management 

strategies. The historical fire regime, prior to the advent of aggressive fire suppression 

around 1900, was frequent with mean fire return intervals between 10.6 – 28.2 years 

across both Ponderosa pine-dominated and mixed-conifer sites (Heyerdahl 1997, 

Johnston et al. 2016). More recent fire frequency is mediated by active fire suppression, 

but there continues to be an average of 1.6 fires per year within the study area 

boundaries and an average of 9,706 ha burned annually for the period 2000 – 2014 

(Monitoring Trends in Burn Severity 2017). To capture areas of forest and the 

surrounding grass and shrublands that provide continuous fuels for fire spread, the 

geographic boundaries of the study site are U.S. Hwy 26 to the north, U.S. Hwy 20 to the 

south, and include a buffer to the east and west of the National Forest that ranges from 

approximately 2 – 30 km. 
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 3.2.1.1 Land ownership and management   

The study area is dominated by federally owned and managed lands (USFS: 

570,750 ha; Bureau of Land Management (BLM): 114,008 ha). The remaining land is 

divided among private ownership (241,971 ha), Oregon State (OR; 11,423 ha), and the 

Bureau of Indian Affairs (BIA; 153 ha). However, forested land is primarily contained 

within the USFS boundaries (76%), and that is where the majority of fuel treatments and 

biomass harvest takes place.   

The Malheur National Forest Land and Resource Management Plan, which laid 

out desired goals and objectives until the year 2039, was last updated in 1990, and the 

next plan is currently in development. In the current plan, silvicultural objectives 

focused on increasing resiliency to insects and increasing “intensive” timber use and 

aimed to apply uneven-aged management methods to approximately 200,000 acres 

(80,937 ha) with 75,000 acres (30,351 ha) being converted from mixed-conifer to 

ponderosa pine stands. The plan increased prescribed burning to about 1,214 ha per 

year, which has already been exceeded as forest managers are now typically burning 

more than twice that amount (approximately 2,830 ha per year) and hope to continue 

increasing that amount (USFS Fuel Managers, personal communication, February 12, 

2016). 

3.2.2 Overview of simulation model 

Changes in forest and fuel bed characteristics over time were simulated with the 

dynamic forest landscape model LANDIS-II (Scheller et al. 2007), which is widely used to 
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simulate forest succession and interactions with disturbances such as fire, harvest, wind, 

and insects (Scheller et al. 2008, Lucash et al. 2014, Duveneck et al. 2014, Kretchun et al. 

2014, 2016, Lucash et al. 2017, Loudermilk et al. 2017). LANDIS-II uses the life history 

traits of tree and shrub species, along with soil and climate data, to simulate 

successional trajectories and responses to disturbances over time. Trees are simulated 

as species-age cohorts, which represent all individual trees of each species as a single 

group within an age range (e.g., for this study, trees were grouped into 10-year age 

cohorts). Each cell represents a simulation site on the landscape in which all forested 

vegetation and topographical conditions are assumed to be homogeneous. Sites can be 

active or inactive, such as in the case of open water or rocky outcroppings where 

vegetation is not expected to exist. Processes, such as reproduction, competition, 

growth, disturbance, and mortality, are simulated both within and between sites (Figure 

3.1). LANDIS-II v6.2 was used with the Net Ecosystem Carbon and Nitrogen (NECN) 

succession extension (v4.2) to simulate vegetation establishment, growth, competition, 

and mortality. The study landscape was simulated at a resolution of 200 x 200 m (4 ha), 

and a total of 180 simulation runs were completed for a period of 100 years. 
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Figure 3.1. The LANDIS-II forest landscape model (FLM) integrates forest successional dynamics 
with management and disturbance events across space and time. Processes occur within and 
across each 4-ha cell. The NECN Succession extension simulates complex biophysical above and 
below-ground processes.  
 

3.2.3 Model inputs 

3.2.3.1 Ecoregions 

Soil and weather data were used to classify the landscape into 25 ecoregions 

that are assumed to have homogeneous climate and soil moisture conditions. Soil 

available water was assigned to each cell using SSURGO soil data where they were 

available; where they were not, SSURGO provisional data and Soil Resource Inventory 

(SRI) data (Jay Noller, Chris Ringo, Karen Bennett, unpublished data) were used. Cells 

were reclassified into five soil moisture classes using Natural (Jenks) Breaks in ArcMap 
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       Forest Dynamics 
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10.4.1. Maximum temperature and average precipitation for growing season months 

(June, July, and August) were obtained as 30-year normals (1980 – 2010; PRISM Climate 

Group) and reclassified into five climate regions using Iso Cluster Unsupervised (see 

Chapter 2, Figure 2.3).  

3.2.3.2 Weather data 

For contemporary weather I used daily weather data retrieved from the USGS 

Data Portal (maximum and minimum temperatures (˚C), average precipitation 

(mm/day), daily average wind speed (m/s; Maurer et al. 2002), and wind direction 

(degrees clockwise from north; Abatzoglou, 2013) for the period 1979 – 2010, using 

area-weighted grid statistics for each of the five climate regions. To ensure that 

treatments and fire events would be applied to consistent forest composition and 

structure across scenarios, historical climate controlled tree growth and forest 

succession for all scenarios. Therefore, for both contemporary weather and extreme 

weather scenarios, trees were grown with identical daily weather conditions. 

However, a primary objective of this study is to examine the effects of treatment 

prescriptions on wildfire spread and severity during extreme weather events. To achieve 

this, climate inputs were decoupled between forest succession and wildfire during 

extreme weather simulations in order to provide extreme weather conditions for 

simulation of fire ignition, spread, and resulting tree mortality. These extreme weather 

inputs were derived from years with greater-than-normal fire activity on the study 

landscape: 1990, 2007, 2014, 2015, and the entire year’s daily precipitation, 
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temperature and wind speed and direction data were included with the reasoning that 

those years’ annual conditions contributed to their hotter, drier, and windier than 

average conditions.  

3.2.3.3 Vegetation 

LANDIS-II simulates tree and shrub competition and regeneration in each site on 

the landscape. As a starting point, initial vegetation communities are assigned to each 

site. Vegetation inputs were leveraged from work completed for Chapter 2. Vegetation 

data were obtained from the Gradient Nearest Neighbor (GNN) maps obtained through 

the Landscape Ecology, Modeling, Mapping and Analysis (LEMMA) group (forested 

areas, Landsat imagery date 2012; https://lemma.forestry.oregonstate.edu/data/home) 

and the GAP Analysis Program’s Ecological Systems map (unforested areas, Landsat 

ETM+ imagery 1999 – 2001); 

https://gapanalysis.usgs.gov/gaplandcover/data/download/). There were 29 tree 

species identified in forested cells; species that occurred on at least 0.4% of the 

landscape were included in this study (11 species, see Chapter 2, Table 2.1). These 

species were grouped into species-age cohorts in 10-year bins. There were 4,631 unique 

communities on the landscape, each with up to 11 tree species.  

Non-forest cells were assigned to 44 categories from the GAP Analysis Program’s 

Ecological Systems map and were then grouped into five unique non-forest categories 

based on similar vegetation and fuel characteristics (Disturbed and Invaded Grasslands, 

Perennial Grasslands, Sagebrush Shrublands, Deciduous Shrublands [Not Flammable], 

https://lemma.forestry.oregonstate.edu/data/home
https://gapanalysis.usgs.gov/gaplandcover/data/download/
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and Deciduous Riparian Shrublands [Flammable]) and one inactive category that was 

not simulated (e.g., open water, bedrock and scree). Using NatureServe Explorer 

(http://explorer.natureserve.org/servlet/NatureServe?init=Ecol), 45 shrub species that 

occur in the GAP-identified ecosystem categories in the Blue Mountain region were 

identified and reclassified into functional groups based on whether they 1. are nitrogen 

fixing, 2. resprout after fire, and 3. are shade tolerant (see Chapter 2, Table 2.2). Non-

forested cells (e.g., sagebrush shrublands, perennial grasslands, etc.) were assigned 

cohorts of these shrub-groups based on the combinations of individual shrub species 

that occur in each non-forest category. Shrubs were also included in forested cells 

where reported in the GNN Understory inventory. Disturbed and Invaded Grasslands 

and Perennial Grasslands were assigned invasive and native grasses respectively in order 

to provide grass fuel-types and to allow fires to spread through cells that do not contain 

either trees or shrubs. 

3.2.4 Model parameterization and validation 

Model parameterization and validation were leveraged from the work done in 

Chapter 2. 

3.2.4.1 Forest succession 

The Net Ecosystem Carbon and Nitrogen Succession (NECN) extension in LANDIS-

II includes aboveground and belowground C and N pools that follow the CENTURY soil 

model (Parton et al. 1993). Temperature and precipitation at monthly time-steps control 

vegetation growth and reproduction. Model parameters were obtained from the 

http://explorer.natureserve.org/servlet/NatureServe?init=Ecol
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literature and available datasets including the USDA Fire Effects Information System 

(https://www.feis-crs.org/feis/), USGS Vegetation Atlas of North America 

(https://pubs.usgs.gov/pp/p1650-a/), the Northeastern Ecosystem Research 

Cooperative’s Foliar Chemistry Database 

(http://www.nercscience.org/Metadata_FoliarChemistry.html), the National 

Atmospheric Deposition Program (http://nadp.sws.uiuc.edu/NTN/ntnData.aspx), and 

the Oak Ridge National Laboratory database 

(https://daac.ornl.gov/SOILS/guides/West_Soil_Carbon.html) and from previous studies 

that utilized LANDIS-II species parameterization (Loudermilk et al. 2014, Lucash et al. 

2014, Creutzburg et al. 2016). A full list of parameters that were calibrated are included 

in the online repository listed in Appendix A. 

NECN Succession “spins up” to the start year of the simulation by iterating 

succession at the number of time steps equal to the oldest cohort in each site allowing 

comparison between simulated biomass and observed biomass. Biomass and growth 

validation was accomplished by comparing aboveground tree biomass (total and 

species-specific) with Forest Inventory Analysis (FIA) data. Simulated total biomass 

ranged from 0 to 105 Mg/ha with a mean value of 45 Mg/ha, while biomass estimates 

from FIA data ranged from 0 – 236 Mg/ha with a mean of 45 Mg/ha. These results show 

that while the model did not simulate the full range of variability in total biomass, it 

sufficiently captured average biomass and adequately reproduced tree growth. 

Validation of each of the 11 modeled tree species was performed by comparing average 

http://nadp.sws.uiuc.edu/NTN/ntnData.aspx
https://daac.ornl.gov/SOILS/guides/West_Soil_Carbon.html
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species-level biomass in cells where that species occurs with GNN data for that species. 

Out of the 11 tree species simulated, nine achieved average biomass within 30% of GNN 

(see Chapter 2, Figure 2.8). 

3.2.4.2 Fuel Treatments 

Fuel treatments were conducted through simulated harvest of trees and 

prescribed fire using the Biomass Harvest (v3.2) extension. This extension uses 

management maps (e.g., USFS, BLM, etc.) and stand maps to define treatable areas and 

ranks stands for harvest or prescribed fire based on user-defined parameters including 

species, age, economic value, or fire hazard. I defined prescriptions for each forest type 

as laid out in the fuel treatment scenarios discussed in section 2.4 and designated the 

percentage of each management area to be treated per decade. Mechanical harvest 

treatments ranged from pre-commercial thinning of small-diameter (young) cohorts to 

commercial harvest of large-diameter (older) cohorts. Prescribed fire treatments were 

designed to emulate the proportion of shrubs and trees removed during underburning 

(T. Boyce, personal communication, February 12, 2016). Output data for each scenario 

at each timestep included area treated with each prescription type, number of cohorts 

removed of each species, and biomass (Mg) removed of each species. 

3.2.4.3 Wildfire 

Two versions of the Dynamic Fire and Fuels System (DFFS) extensions (Sturtevant 

et al. 2009) simulated wildfire disturbance and interactions with climate and fuels. 

Extreme weather fire simulations were completed using DFFS v2.1, which allows a 
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separate input file for fire weather than that for the NECN Succession extension. (See 

section 3.3.1.2 for more information about extreme fire weather inputs.) DFFS v3.0 

(unpublished), which links weather between NECN and DFFS, was used for 

contemporary-weather scenarios to simulate fire events with the same daily weather 

conditions that control vegetation growth. Both versions of DFFS utilize vegetation 

succession data from NECN, dynamically changing fuel beds based on current 

vegetation. Fuel types were developed to represent 15 unique combinations of tree 

species and ages, as well as shrublands and grasslands, with individual fire behavior and 

consumption parameters. Landscape topography, which affects fire spread rates, was 

integrated via slope and aspect maps.   

 Fire was calibrated to approximate annual area burned (mean 9,706 ha, median 

615 ha, range of 0 - 81,010 ha, standard deviation 24,481 ha) and fire size (mean 6,933 

ha with a range of 434 – 56,484 ha) for the period 2000 – 2014 in the study area. 

(Multiple small fires with the same wildfire designation were considered one fire.) This 

15-year period was selected because it reflects the most recent fire activity on the study 

landscape allowing calibration of the model to reflect current conditions. Historical fire 

data were retrieved from the Monitoring Trends in Burn Severity database (2016) and 

the USFS (Blue Mountains Fire History Polygons, released 2016). Simulated fire sizes 

were first calibrated by limiting the maximum fire size to achieve a distribution 

equivalent to the historical period and to reconstruct fire duration from these simulated 

fires. Calibration simulations were then run as duration-limited, which allows for the 
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possibility of larger fires and greater annual area burned reflecting the influence of 

dynamic vegetation and weather over time (Sturtevant et al. unpublished). The DFFS 

extension uses log-normal duration data to generate the distribution of fire durations, 

which was then used to calibrate annual area burned, which also follows a log-normal 

distribution (see Chapter 2, Figure 2.9). Three replicates of 50 years were then run and 

averaged to validate the calibration, achieving a mean of 10,400 ha burned annually 

with a range of 0 – 134,700 ha. 

3.2.5 Simulation scenario design 

I used scenarios to compare among: 1. weather scenarios (contemporary 

weather vs. extreme fire weather); 2. management extent scenarios (i.e., treating more 

and less area with prescribed fire per year and adding treatments in riparian areas); and 

3. spatial scenarios, i.e., distributing treatments across the landscape vs. targeting areas 

with high fire risk (hereafter “distributed” and “optimized”). In February 2016, a 

workshop was held with USFS personnel including fuels planners/managers and 

ecologists, and follow-up email and phone meetings were held with two forest 

silviculturists. During these meetings, “business as usual” fuel treatment prescriptions 

were defined and comparative scenarios were developed. Fuel treatment prescriptions 

included biomass harvest (i.e., mechanical thinning) for ponderosa pine, dry mixed-

conifer and moist mixed-conifer forest, pre-commercial thinning, and prescribed 

burning. Management scenarios included five variations: 1. untreated landscape, 2. 

“business as usual” (BAU) management, 3. additional treatments in Riparian Habitat 
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Conservation Zones (hereafter referred to as riparian areas), 4. application of additional 

prescribed fire (2x the area of BAU), and 5. tripled application of additional prescribed 

fire (3x the area of BAU). These scenarios allowed comparisons that help us understand 

how effective BAU prescriptions will be at reducing wildfire activity under extreme 

climate conditions, and they are designed to help answer federal forest management 

questions about the impacts of treating in riparian areas and adding acreage of 

prescribed fire.  

All scenarios were run under both contemporary and extreme weather 

conditions, and each of the three management scenarios that include treatments (i.e., 

all except the untreated scenario) were run with fuel treatments placed through two 

different spatial strategies: 1. distributed across the entire forested portion of the 

landscape (excluding protected areas) and 2. with optimized placement of treatments in 

areas of the landscape that have the highest probability of high severity fire. Ten 

replicates of each simulation were run for 100 years to capture variability and to allow 

for comparisons among scenarios over time. See Figure 3.2 for a conceptual model of 

the scenario design. 
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Figure 3.2. Matrix of weather, harvest, and spatial placement scenarios. Weather scenarios 
included contemporary and extreme weather. Management scenarios included Untreated (no 
management), Business-as-Usual (BAU), which is modeled after current management strategies, 
Business-as-Usual plus additional area treated in Riparian Habitat Conservation Areas 
(BAU+Riparian), and Business-as-Usual plus additional prescribed fire (BAU+RxFire and BAU + 
RxFire3x). Active management (all except the control) were simulated with distributed and 
spatially optimized treatments. 
 

3.2.5.1 Hot spot treatment areas 

To assess whether treatment placement optimization is effective in slowing the 

spread and reducing the severity of wildfire, I identified areas on the landscape that 

were the most likely to burn with high severity. Ten replicates of untreated landscape 

simulations under extreme weather conditions for 100 years were compiled and 

assigned an index value based on severity and frequency of burning. This was 

accomplished by compiling fires of severity 4-5 (indicating crown fraction burned of 

0.495 – 1.0), and tabulating the number of times each cell burned at that severity over 

Contemporary 
Weather 

Extreme 
Weather 
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1000 simulation-years. The resulting index ranged from 0 – 700, and only sites with a 

value of at least 450 were retained (indicating that in any given year a cell has a 12.5 – 

17.5% chance of burning at severity 4 and an 8 – 14% chance of burning at severity 5). 

Optimized treatment areas were identified by overlaying a map of these high-severity 

fire-prone locations with a map of forested portions of the landscape that are legally 

available for treatment. On federally and state-managed lands, treatments were 

concentrated in these high-risk areas; treatment placement was not altered on lands 

managed by private owners. The effectiveness of distributing management across the 

landscape (Figure 3.3a) was compared with spatially optimizing treatments (Figure 

3.3b). 

 

Figure 3.3. Distributed (a.) and spatially optimized (b.) management areas. About half of the 
land is under USDA Forest Service management, with the remainder divided among private 
landowners and other federal and state agencies. Yellow polygons in map (a) indicate areas that 
are excluded from management, such as wilderness and designated old growth habitat. In order 
to determine whether concentrating fuel reduction treatments in areas at high risk for frequent 
wildfire at high severity is as effective at reducing wildfire spread and severity as distributing 
those treatments across the landscape, 1000 simulation-years were run with no management. 
Areas that frequently burned and where wildfire severity was highest were identified. 
Treatments on National Forest, BLM and Oregon State were concentrated in these high-priority 

a b
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areas, while management on private lands was not adjusted. As with the distributed treatment 
scenarios, riparian areas remained available for treatment only in the BAU+Riparian scenario.  
 

3.2.5.2 Scenario Descriptions 

Untreated: Simulations of the untreated landscape were run as a control to compare 

the effects of the other treatment scenarios against no treatment. 

Business as Usual (BAU): This scenario was designed to emulate current management 

practices on both publically-managed and privately-owned land. On USFS land, this 

consisted of pre-commercial thinning of understory trees up to 23 cm (9”) diameter at 

breast height (DBH), commercial harvest of grand fir, lodgepole pine, western juniper, 

and some harvest of ponderosa pine, Douglas fir, and western larch up to 53 cm (<21”) 

DBH. Area harvested per decade was 40,500 ha (100,000 acres) divided equally between 

forest dominated by ponderosa pine, dry-mixed conifer forest, and moist-mixed conifer 

forest. Ponderosa pine and dry-mixed conifer forest were treated with prescribed fire 

immediately after harvest and again after 10 years. Prescribed fire was designed to 

reproduce the effects of a 1.2-m (4-foot) flame length, removing small-diameter trees of 

all species as well as most shrubs and post-harvest slash, and these stands were 

assigned to a fuel-type with low flammability for 15 years (ponderosa pine forest) and 

10 years (dry-mixed conifer forest) following the prescribed burn treatment. Prescribed 

fire was not applied following treatments in moist mixed-conifer forest. 

 Pre-commercial thinning was applied to 12,000 ha (30,000 acres) per decade 

with sites selected based on the presence of fire-prone fuels (especially young mixed 

conifer and areas with a dense mix of deciduous trees, shrubs and grand fir). 
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Approximately 80% of stems up to 28 cm (11”) were removed, and prescribed fire was 

applied immediately and again after 10 years. These stands were also assigned to a fuel-

type with low flammability for 10 years following each treatment, reflecting the removal 

of ladder and small diameter fuels.  

 Forested lands managed by BLM and the Oregon Department of Forestry were 

treated with small harvests designed to emulate timber harvest and small stewardship 

contracts. Harvest sites were selected based on a preponderance of ponderosa pine, 

Douglas fir, and grand fir of at least 40 years, and approximately 4,000 ha (9,880 acres) 

were harvested per decade. 

Privately-owned forest sites were prioritized based on the presence of 

harvestable Douglas fir, ponderosa pine, western large, and grand fir of at least 40 

years, and the oldest cohorts of each species were harvested. On average, 7,148 ha 

(17,870 acres) were harvested per decade on private lands. 

Added Riparian Treatments (BAU+Riparian): This scenario included all treatments from 

the BAU scenario but added additional area treated in riparian areas. On a 50-year 

rotation, riparian areas were treated with restoration or prescribed burn–only 

treatments. The restoration treatment was designed to favor broadleaved trees and 

fire-tolerant species and removed most (99%) of all harvestable conifer species between 

0-10 years of age, 80-90% of mid-aged conifers (between 30 – 80 years of age, 

depending on species), but left relict trees of all species. Sites in this category received 
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prescribed fire immediately following tree removal and again after 10 years. Sites that 

received only prescribed fire were not revisited. 

Increased Prescribed Fire Treatments (BAU+RxFire): This scenario included all 

treatments from the BAU scenario and added an additional 21,000 ha (51,892 acres) of 

prescribed burning per decade. Sites were selected based on the presence of high-risk 

fuel types (e.g., young mixed conifer). 

Tripled Prescribed Fire Treatments (BAU+RxFire3x): This scenario included all 

treatments from the BAU scenario and added an additional 61,500 ha (153,860 acres) of 

prescribed burning per decade. Sites were selected based on the presence of high-risk 

fuel types (e.g., young mixed conifer). 

Table 3.1. Management scenarios and area treated. Area reported is the average area across 
replicates for the first two decades of simulation under contemporary weather. Over time, area 
available for treatment fluctuates due to changes in forest dynamics and wildfire activity. Under 
extreme weather, less area was available for harvesting over time due to mortality from wildfire 
disturbance. 

Scenario Area harvested (ha/decade) Area of Rx Fire (ha/decade) 

Untreated 0 0 

Distributed Placement   

BAU 64,225 26,252 

BAU+Riparian               + 5,103               +4,084 

BAU+RxFire               +0               +22,039 

BAU+RxFire3x               +0               +61,556 

Optimized Treatment 

Placement 

  

BAU 63,709 28,446 

BAU+Riparian               +4,259               +4,276 

BAU+RxFire               +0               +21,364 

BAU+RxFire3x               +0               +62,220 
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3.2.6 Analysis 

Annual area burned, fire frequency, and fire severity were compared among 

harvest and weather scenarios and between treatments placed across the entire 

forested landscape and those placed only within the spatially optimized treatment 

areas. Statistical analysis was completed for annual area burned and fire severity data. 

Annual area burned data followed a log-normal distribution, therefore analysis was 

conducted on log-transformed data. Following Bartlett’s test for homoscedasticity, 

analysis of variance and Tukey’s honestly significant difference tests were run to 

differentiate means. For non-normally distributed severity data, a Kruskal-Wallis test 

was used with post hoc Dunn’s test for ranked comparisons. All model calibration and 

analysis were completed in RStudio 1.0.153 using R x64 3.4.1.  

3.3 Results 

3.3.1 Riparian Treatments 

The addition of fuel treatments in riparian areas did not result in any differences 

in wildfire activity at the landscape scale from the BAU scenario. Therefore, there will 

not be any further discussion of riparian treatment results in this section. 

3.3.2 Treatment effects on fire metrics 

3.3.2.1 Annual area burned 

Overall, treatment reduced area burned under both historical and extreme 

weather (0.000 < p < 0.02, Table 3.2). Doubling the area treated with prescribed fire 

resulted in small additional reductions in average annual area burned, and tripling the 
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area of prescribed fire resulted in a significant reduction from the BAU scenario (p < 

0.006). Increasing treatment area also increased the number of years without any fire at 

all under both contemporary weather (from 139 years out of a possible 1,000 simulation 

years under BAU to 166/208 years with BAU+RxFire/BAU+RxFire3x respectively) and 

extreme weather (from 117 years to 132/172 years).  

Spatial optimization of treatments into high-risk areas of the landscape was 

equally effective in reducing annual area burned, regardless of weather, for 5 out of the 

6 scenario combinations (p = 1.0). The exception was RxFire3x under extreme weather, 

where spatially optimized treatments resulted in greater area burned than distributed 

treatments (p = 0.000; Figure 3.4).  

Table 3.2. Multiple post-hoc comparison results from Tukey’s honestly significant difference of 
means following a significant result from analysis of variance (contemporary weather: df = 6, F = 
10.38, p < 0.00001; extreme weather: df = 6, F = 13.81, p < 0.00001 ). Results are reported as the 
difference in log-transformed value of column - row/p-value (alpha = 0.05). A positive difference 
value indicates that the column scenario produced higher area burned than the row scenario. 
Significant results are marked with an *. All treatment scenarios led to significantly lower annual 
area burned as compared with no treatment. Tripling the level of prescribed fire per year 
(RxFire3x) significantly reduced area burned compared with business as usual (BAU) for both 
weather conditions, and under contemporary weather, spatial optimization of RxFire3x did not 
significantly change its effectiveness. However, under extreme weather, spatially optimizing 
RxFire3x was less effective in reducing annual area burned. 

 BAU Opt_BAU RxFire Opt_RxFire RxFire3x Opt_RxFire3x 

Contemporary 
Weather 

      

Opt_BAU 
0.12 / 
0.99 

     

RxFire 
0.32 / 
0.38 

0.20 / 0.85     

Opt_RxFire 
0.20 / 
0.86 

0.08 / 1.0 
-0.12 / 
0.99 

   

RxFire3x 
0.59 / 
0.006* 

0.47 / 
0.05* 

0.27 / 
0.60 

0.39 / 0.18   
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Opt_RxFire3x 
0.30 / 
0.47 

0.18 / 0.91 
-0.02 / 
1.0 

0.10 / 1.0 
-0.29 / 
0.51 

 

Untreated 
-0.54  / 
0.014* 

-0.66 / 
0.001* 

-0.86 / 
0.0000* 

-0.74 / 
0.0002* 

-1.3 / 
0.0000* 

-0.84 / 
0.0000* 

       

Extreme 
Weather 

      

Opt_BAU 
-0.17 / 
0.96 

     

RxFire 
0.28 / 
0.67 

0.44 / 0.14     

Opt_RxFire 0.10 / 1.0 0.27 / 0.69 
-0.17 / 
0.95 

   

RxFire3x 
0.75 / 
0.0008* 

0.91 / 
0.0000* 

0.47 / 
0.10 

0.64 / 
0.006* 

  

Opt_RxFire3x 0.07 / 1.0 0.24 / 0.80 
-0.21 / 
0.89 

-0.03 / 1.0 
-0.67 / 
0.003* 

 

Untreated 
-0.73 / 
0.001* 

-0.56 / 
0.02* 

-1.01 / 
0.0000* 

-0.83 / 
0.0001* 

-1.48 / 
0.0000* 

-0.80 / 
0.0002* 
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Figure 3.4. Boxplots of annual area burned under contemporary (a.) and extreme (b.) weather 
for each management scenario. Under both weather scenarios, fuel treatments reduced annual 
area burned as compared with the untreated landscape (p = 0.0). Doubling the area treated with 
prescribed fire was not sufficient to significantly reduce area burned (Contemporary: p = 0.22, 
Extreme: p = 1.0), but tripling the area treated with prescribed fire resulted in significant 
decreases under both contemporary (p = 0.0008) and extreme weather (p = 0.0005). Spatially 

a. 
Contemporary Weather 

b. 
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optimizing treatments resulted in similar annual area burned for each treatment type under 
contemporary weather (i.e., no significant differences), indicating that under moderate 
conditions, concentrating treatments in areas with high likelihood of burning at high severity is 
effective. However, under extreme weather, RxFire3x was more effective when distributed 
across the landscape (p = 0.019). In this figure, area burned is expressed as the natural log, and 
log-mean values for annual area burned are listed above each corresponding box.  

 

3.3.2.2 Fire frequency 

Wildfire was most frequent on the untreated landscape, with treatment 

reducing fire incidence from a maximum of 48 fires per cell (Untreated) to a maximum 

of 29 fires per cell (RxFire3x) out of 1,000 chances to burn. Treatment of any type led to 

less frequent fire in all areas of the landscape with the greatest reductions in the central 

and southwestern portions. Spatially optimizing treatments was similarly effective in 

reducing fire occurrence as distributing treatments and resulted in similar spatial 

patterns of fire occurrence. Under extreme weather, a greater proportion of the 

landscape, especially in the central part of the study area, was likely to burn. Spatially 

optimizing treatments reduced fire frequency in the areas treated (central and 

northeastern areas) but resulted in greater area burned in the untreated portion of the 

landscape (southwestern areas) with this effect most pronounced in the RxFire3x 

scenario (Figure 3.5). 
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Figure 3.5. Maps of total fire occurrence at each site over all replicates and years. Scale 
represents the number of fires that occurred in each individual cell over 100 years and 10 
replicates. Fire was more likely over a greater proportion of the landscape under the Untreated 
scenario, and with management, the southwestern portion of the landscape was less likely to 
burn. Spatially optimizing treatments was similarly effective in reducing fire occurrence as 
distributing treatments and resulted in similar spatial patterns of fire occurrence. Under 
extreme weather, a greater proportion of the landscape, especially in the central part of the 
study area, was likely to burn. Spatially optimizing treatments reduced fire occurrence in the 
areas treated (central and northeastern areas) but resulted in greater area burned in the 
untreated portion of the landscape (southwestern areas) with this effect most pronounced in 
the RxFire3x scenario. 
 

Mean fire return interval (MFRI) is a measure that characterizes the frequency of 

fire at the site or stand level and is averaged across stands to give a measure of 

landscape-level fire frequency. However, at this landscape-scale of just under 1 million 

ha, the measure is less useful because as area increases the MFRI decreases (Agee 

1993). For example, under contemporary weather, the MFRI of the landscape with BAU 

Contemporary Extreme Weather 

Untreated 

BAU 

RxFire 

RxFire3x 

Distributed Optimized Distributed Optimized 
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management is 1.16 years, which reflects that there are very few years in which there is 

no fire anywhere on the landscape. In contrast, fire history studies of individual stands 

in the study area have yielded MFRI values of 10.6 – 28.2 years (Johnston et al. 2016). A 

better measure of frequency for landscapes of this size is fire rotation period (FRP), 

which is related to both fire frequency and annual area burned. FRP is the number of 

years it would take for an area equivalent to the size of the study area to burn (Agee, 

1993). Higher numbers indicate longer durations, which is equivalent to less frequent 

and/or extensive wildfire. FRP of the untreated landscape under contemporary weather 

was 90.53 while BAU management was 157 years, reflecting the significant reduction in 

annual area burned. Again, tripling the amount of area treated with prescribed fire 

resulted in the greatest impact with an FRP of 170 years. Under extreme weather 

simulations, fire frequency is based on forcing a much higher number of simulated fires 

than would be expected under normal conditions, and therefore FRP should be 

considered as an index to compare among treatments and not as a realistic number of 

years. FRP for the untreated landscape was 12.1 years, and treatment increased it to a 

range of 16.5 years (BAU) to 19.0 years (RxFire3x). Likewise, FRP was similar for 

optimized and distributed treatments except for RxFire3x, where FRP decreased from 

19.01 to 18.28 years when treatment placement was optimized. 

3.3.2.3 Fire severity 

Fuel treatment effects on fire severity were apparent at individual sites (Figure 

3.6), and severity reductions were most effective in the treated portions (i.e., forested 
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areas) of the landscape. Under contemporary weather, reductions in severity at the 

landscape scale were not statistically significant (p = 0.165), and increased area treated 

with prescribed fire did not provide a significant further reduction in landscape-level fire 

severity. However, under extreme weather, all treatment scenarios had significantly 

lower severity than Untreated (0.0000 < p < 0.001), and resulted in a 9-11% decrease in 

severity (Figure 3.7). The most effective treatment scenarios were spatially optimized 

BAU and distributed RxFire3x, both which resulted in 11% decreases in severity. 

 

Figure 3.6. Mean fire severity under extreme weather compared between distributed and 
spatially optimized treatments for the BAU and RxFire3x scenarios. All treatment scenarios 

Extreme Weather Fire Severity 

Distributed 

Placement 

Optimized 

Placement 

Untreated 

BAU 

RxFire3x 

Severity Index 
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reduced mean fire severity as compared with the untreated landscape. Although spatially 
optimizing treatments decreased severity in treated areas of the landscape, it resulted in slight 
(BAU) and significant (RxFire3x) increases in landscape-level mean severity because of higher 
severity in untreated areas of the landscape. The outer perimeter of the study landscape is 
dominated by grassland and shrublands, which experienced high-severity fires under all 
scenarios. 

 

 

Figure 3.7. Boxplots of fire severity in forested portions of the landscape under contemporary 
(a.) and extreme (b.) weather for each management scenario. Under contemporary weather, 
treatment scenarios reduced severity for sites that burned, although those reductions were not 

a. Contemporary Weather 

b. 
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statistically significant (p = 0.17). Spatially optimizing treatments led to slight increases in fire 
severity because of fewer intersections of wildfire with recently treated sites. Under extreme 
weather, treatment significantly reduced mean severity (p = 6.335e-05) compared with the 
untreated landscape, and optimizing treatment placement in all but the optimized RxFire3x 
scenario led to further decreases in severity. 
 

Spatial optimization of treatments in areas at high risk for frequent, high-severity 

fire reduced average severity from 3.93 to 3.87. This decrease was primarily due to a 

greater proportion of fires in the severity range of 2.5 – 3.5 as compared with non-

optimized treatment placement and a smaller proportion of fires in the severity range of 

3.6 – 4.3. However, this benefit was somewhat offset by an increase in the proportion of 

high-severity fires in the 4.4 – 4.8 severity range (Figure 3.8) under spatially-optimized 

treatment placement, and spatially optimizing the RxFire3x scenario resulted in higher 

landscape-level severity. This was due to a reduction in area available to harvest over 

time, leading to fewer sites treated and less biomass harvested/removed through 

prescribed fire as compared with the distributed treatments. 

 

a. Contemporary Weather 
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Figure 3.8. Density plots of mean fire severity under historical and extreme weather. Active 
management reduced mean fire severity under both historical (a.) and extreme (b) weather 
scenarios, and tripling the amount of area treated with prescribed fire produced the greatest 
reductions. Under extreme weather, spatial optimization of fuel treatments further reduced 
mean fire severity, with the greatest reduction in fires in the 3.3 – 4.2 range of severities. 
 
Table 3.3. Comparison of management scenarios’ effects on wildfire annual area burned and 
severity for 1. contemporary and extreme weather and 2. distributed and optimized treatment 
placement.  

 Contemporary Weather Extreme Weather 

Distributed 
Placement 

 Active management 
reduced annual area 
burned, but reductions 
to severity were not 
statistically significant. 

 Doubling the area 
treated with prescribed 
fire was not sufficient to 
reduce annual area 
burned or severity at the 
landscape level. 

 Tripling the area treated 
significantly reduced 
area burned. 

 Active management 
reduced annual area 
burned and wildfire 
severity. 

 Doubling the area treated 
with prescribed fire 
reduced annual area 
burned, but had no effect 
on severity.  

 Tripling the area treated 
significantly reduced area 
burned and led to lower 
landscape-level fire 
severity. 

b.
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Optimized 
Placement 

 Performed similarly in 
reducing area burned as 
distributed placement.  

 The RxFire3x scenario 
reduced area burned 
from BAU, but was not 
as effective as 
distributing treatments. 

 Reduced fire severity in 
the portion of the 
landscape that was 
treated, but resulted in 
an increase in overall 
mean severity. 

 Performed similarly in 
reducing area burned as 
distributed placement 
(except RxFire3x). 

 RxFire3x significantly 
increased area burned as 
compared with the RxFire3x 
distributed treatment 
placement.  

 Severity was reduced in all 
but the optimized RxFire3x 
scenario. 

 

3.4 Discussion 

Quantifying the effectiveness of fuel treatments can be accomplished at the site 

level by assessing fire behavior and effects when wildfire burns through a treated stand 

(Finney 2007, Prichard et al. 2010, Safford et al. 2012) or by modeling potential fire 

behavior in treated stands (Stephens and Moghaddas 2005). At the landscape level, it 

becomes challenging to predict how stand-level effectiveness will translate to larger 

areas, accounting for differences in topography, fuel connectivity or fragmentation, and 

how those fuels may change through time, as well as limitations in the feasibility of 

placing fuel treatments everywhere that would benefit. I used a modeling approach to 

show that fuel reduction through mechanical removal of trees and prescribed fire is 

effective at reducing fire extent and severity at the landscape-scale, and that spatially 

optimizing treatments in the areas where fire is more likely to burn at high severity can 

give similar results to distributing treatments across the entire forested landscape, 
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depending on the specific prescription. Similar to what Loudermilk et al. (2014) found in 

the Lake Tahoe basin, NV and what Syphard et al. (2011b) found in the southern Sierra 

Nevada, CA, under extreme weather, fuel treatments were especially effective at 

reducing both severity and area burned due to the greater likelihood of wildfires 

intersecting treatments prior to fuel re-accumulation. 

Regardless of the weather conditions, doubling the amount of prescribed fire on 

the landscape was not sufficient to improve treatment effects at the landscape scale as 

compared with the BAU scenario. Tripling today’s area treated with prescribed fire, 

however, significantly reduced annual area burned under both historical and extreme 

weather and resulted in 50% more fire-free years than BAU, which implies financial, 

social, and health benefits for local communities and wildland firefighting agencies. This 

is a substantial increase in prescribed fire from current management practices, although 

it falls in line with land management agencies’ goals to increase the area treated over 

time (USDA Forest Service 2012), and expenses incurred through additional focus on 

prescribed fire would likely be outpaced by the savings associated with the smaller 

proportion of the landscape burned by wildfire.  

While treatment did not significantly reduce landscape-level fire severity under 

contemporary weather, less of the landscape was subject to burning every year. 

Similarly, Krofcheck et al. (2017a) found no difference in simulated landscape-scale fire 

severity between untreated and managed scenarios under contemporary weather in 

lower-montane mixed-conifer forest in central California, and like this study, they found 
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a significant severity reduction under extreme weather with thin-and-burn treatments. 

Because the warmer and drier years that precipitate large, severe fires are expected to 

become more frequent due to ongoing climate change (Littell et al. 2009), it is 

increasingly critical to manage for more extreme weather instead of looking to past 

trends when planning the scope of forest management. 

The failure of additional prescribed fire to significantly reduce landscape-level 

severity is not surprising because all management scenarios in this study included at 

least the amount of prescribed fire currently being applied by land management 

agencies. Based on other studies, we could expect to see a greater difference between 

mechanical harvest-only treatments and those with added prescribed fire (Stephens and 

Moghaddas 2005, Krofcheck et al. 2017a). This does not mean that increasing 

prescribed fire in small amounts is not beneficial at the site scale – if a wildfire intersects 

a site treated with prescribed fire within the preceding 10 to 15 years, it is likely to burn 

with lower severity and may prevent spread to neighboring stands (Fernandes et al. 

2004, Finney et al. 2005, 2007). Also, prescribed fire is useful, beyond fuel reduction, for 

additional ecological purposes, such as wildlife habitat improvement through snag and 

downed woody debris creation (Stephens et al. 2012, Zarnoch et al. 2014), growth 

stimulation of understory plants through short-term increases in available nitrogen 

(Covington and Sackett 1992), modifying forest structure by increasing canopy base 

height and mean tree diameter through the removal of small diameter trees and ladder 

fuels (Schwilk et al. 2009), and by favoring fire-maintained species such as trembling 



 

93 
 

aspen (Bartos et al. 1994). Therefore, increasing the area treated with prescribed fire is 

useful at the site level even if extensive increases in area treated are not possible. 

 Spatial optimization of mechanical treatments is similarly effective at reducing 

both annual area burned and wildfire severity, as evidenced by the similar performance 

of the BAU treatment when distributed and optimized under both contemporary and 

extreme weather. This is consistent with recent studies that found improved 

performance by treatment placement optimized by simulated fire-travel paths (Finney 

2007, Finney et al. 2007) and by likelihood of high severity fire (Krofcheck et al. 2017b). 

Reductions to area burned and severity were most pronounced under the RxFire3x 

scenario, but spatial optimization of this additional prescribed fire was not effective. 

This appears to be because the reduced area available for treatment also experienced 

wildfires that removed the same fuel type that was targeted in prescribed fire 

treatments (i.e., young, small diameter conifer trees). Therefore, the cost-saving 

benefits associated with spatial optimization of mechanical treatments could be 

combined with the preventative wildfire management benefits of a larger extent of 

prescribed fire application to the distributed landscape for a win-win management 

strategy. 

3.4.1 Effects of fuel treatments in riparian areas 

Although there were no meaningful differences in wildfire activity at the 

landscape scale when fuel treatments were included in riparian areas, they make up a 

small proportion of the overall landscape; thus reduction of fire activity in riparian areas 
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does not appear extensive enough to be detected at landscape-level averages. 

However, this should not be construed to mean that reducing fuels in riparian areas 

would not have an effect at the site scale. Dwire et al. (2017) reported that crown fire 

potential in riparian areas in the Blue Mountains is expected to rise, especially for those 

areas that are dominated by conifers, due to increased water stress under future hotter 

and drier conditions. Currently hardwood-dominated riparian areas may also experience 

higher potential for high-severity fire in the future due to species composition shifts 

toward conifers following dieback of hardwoods such as aspen, which is already being 

observed and is expected to continue (Swanson et al. 2010, Dwire et al. 2017). 

Additionally, prescribed fire imparts desirable effects on riparian ecosystems, including 

impacts to vegetation, macro-invertebrate populations and wildlife habitat quality 

(Bêche et al. 2005, Arkle and Pilliod 2010), indicating that the site-level benefits may 

outweigh concerns about management in sensitive riparian areas. 

3.4.2 Limitations 

This study simulated fuel reduction through mechanical harvest and prescribed 

fire, but did not investigate the differences between wetter-season spring and drier-

season fall burning, which can bring about differential effects on vegetation. Spring 

burns have been found to damage fine roots in ponderosa pine stands (Swezy and Agee 

1991), while other studies have found fall burns to consume greater depth of duff, more 

fine roots, and more of the ectomychorrizal community (Smith et al. 2004), potentially 

weakening trees and causing increased susceptibility to other stressors such as insects 
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and drought. Instead of focusing on the timing of burns, this study used an outcomes-

based approach for modeling fuel reduction from prescribed fire by emulating the 

desired proportion of mortality for species-age cohorts. 

As with any study that employs modeling, there are limitations and uncertainty 

associated with the model. The number of ecological processes that can be included are 

limited by the model itself and by time limitations. In this case, I employed model 

extensions to simulate forest succession (seed dispersal, reproduction, growth, 

competition, age-related mortality), harvest (mechanical tree removal and prescribed 

fire), and wildfire. I did not include wind disturbance or insect damage, but I included 

the mortality associated with these disturbances by calibrating the model’s simulated 

background mortality with empirical data and expert consultation (M. Jennings, 

personal communication, February 14, 2017). Uncertainty is also introduced through the 

parameterization of the model; for instance, vegetation, temperature, precipitation, and 

soil characteristics are derived from point sources that have been imputed to a 4-ha 

resolution, thereby introducing error. However, a study at this scale (approximately 1 

million ha) identifies broad spatial and temporal trends and approximations from site-

level data are sufficient for this purpose.  

Stochasticity in modeled disturbance can also introduce uncertainty as 

interactions between forest succession and disturbance can lead to a range of outcomes 

over the simulation period. To minimize this uncertainty, I have run 10 replicates of 

every scenario and reported mean values across replicates. 



 

96 
 

Under extreme weather, the greater number of simulated fires, larger annual 

area burned, and higher fire severity led to more biomass loss over time due to 

disturbance and less biomass available to be harvested during management events. This 

was evident across all management prescriptions, but was most evident in pre-

commercial thinning and prescribed fire treatments, both of which target younger 

cohorts of trees that are most likely to be killed during fire events. This interaction 

between fire and harvest disturbances likely did not affect wildfire metric outcomes 

because whether removed by wildfire or by management, reduced biomass and altered 

fuel types following either simulated disturbance is treated similarly in the model in 

respect to subsequent fires. 

3.5 Conclusions 

Reducing fuels through mechanical harvest and prescribed fire are effective at 

reducing annual area burned, fire frequency, and fire severity when applied at the 

landscape scale over an extended period of time, and these effects are greatest during 

extreme weather events. During periods with more extreme (i.e., hotter and drier) 

conditions, fire is more likely to ignite, spread, and escape suppression efforts leading to 

higher intensity fires with greater severity. At these times, there is also a higher 

likelihood that fires will intersect with fuel treatments, which contributes to the higher 

effectiveness of those treatments at reducing wildfire behavior. While there is some 

uncertainty about the degree to which temperatures will rise and precipitation amounts 

will change in the future, GCMs consistently project hotter temperatures, a greater 
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proportion of precipitation falling as rain rather than snow, earlier snowmelt, and longer 

fire seasons in the western U.S. Thus, it is critical that land managers plan for an 

increased incidence of extreme weather conditions and the larger, more intense fires 

they will facilitate. This study found that spatially optimized mechanical treatments are 

similarly effective to those distributed throughout the landscape in reducing wildfire 

spread and severity, which could present opportunities to concentrate management 

efforts in areas with high likelihood of high-severity wildfires. Increased prescribed fire 

treatments, which are less expensive and involve less disturbance with heavy 

equipment and the need for extensive road systems, provide the most benefit when 

distributed throughout the landscape and as a supplement to current levels of 

mechanical fuel removal. 
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Chapter 4 – Local resident perspectives on forest management and implications for 
fuel treatments in a rural community in eastern Oregon 
 

4.1 Introduction 

 As wildfires burn through increasingly large swaths of land in the western United 

States, generating record costs in terms of fire suppression, destruction of property, and 

losses of natural resources (Calkin et al. 2005, Westerling et al. 2006, Littell et al. 2009), 

communities have developed polarized views about how fire and forests should be 

managed (Gordon et al. 2010). Over the past two decades, social science research into 

the human dimensions of wildfire has increased, building a picture of the impacts of 

wildfire on humans and their views on wildfire prevention, suppression, and recovery 

(McCaffrey et al. 2013) even as an increasing number of people move into fire-prone 

landscapes (Theobald 2001, Radeloff et al. 2005). While decision-making around forest 

management practices in public forests rests with land management agencies, public 

input and collaboration are important steps in developing priorities and strategies. The 

public has opportunities to review proposed plans and to provide input through public 

engagement meetings, participation in formal collaborative forestry organizations, or 

public comment on environmental impact statements (U.S. EPA 2017). For example, in 

the Blue Mountains of Oregon, U.S.A., the U.S. Forest Service (USFS) is in process of 

developing the Blue Mountains Forest Resiliency Project to reduce fuel loading and 

restore dry forest to be more resilient to wildfire. Following the development of a 

proposed action plan, there was a comment period that elicited 184 comments and 
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public engagement meetings that included more than 170 participants (USDA Forest 

Service 2016a). Comments and discussion were captured and publically posted, and 

comments were evaluated for inclusion in a refined proposed action plan. The National 

Environmental Policy Act (NEPA) process will follow with another opportunity for the 

public to review the environmental impact statement and submit comments. 

 While this process of public engagement provides an official channel for 

stakeholders to express their preferences for forest management plans, it has 

limitations in its usefulness (Brown and Reed 2009). Fuels management presents a 

“wicked” problem, which cannot be solved objectively because it contains the 

intersection of ecological science, public policy, and social systems (Rittel and Webber 

1973). Public lands are imbued with the values and priorities of all stakeholders, which 

not only vary across groups and individuals but which change over time. These priorities 

range from the economic, such as natural resource extraction and tourism, to the highly 

personal, such as a strong emotional attachment to a particular place or species. 

Therefore, any question posed by land managers will not have a single correct solution, 

and instead may have many solutions that are equally satisfying to some portion of 

stakeholders as they are unsatisfactory to others (Allen and Gould 1986). There is also a 

limitation in the scope of input agencies can accommodate. Comment periods and 

public engagement meetings are typically designed to obtain input on a finite project in 

space and in time, and therefore may not offer a vehicle for utilizing input that is 

broader in philosophy or that includes requests for operations that would exceed 



 

100 
 

project budget, purpose, or a limited timeframe. In forest management, decisions made 

in the present will have long-term repercussions into the future. For these reasons, 

McCaffrey et al. (2013) suggest that research is needed to provide insights into how 

decisions made in the present may affect future forests and communities. 

Decision makers have computing tools available to them that go beyond 

understanding management outcomes at the stand level and the near term. Dynamic 

forest landscape models (FLMs) integrate complex processes to simulate long-term 

outcomes at the landscape scale, allowing for scenario building and comparison of 

alternate strategies. One way to utilize these tools and integrate the input of 

stakeholders is through public participation geographic information systems (PPGIS). 

PPGIS is a method of integrating local knowledge into GIS tools by soliciting participation 

of a group of subjects who contribute to relevant spatial information within the context 

of a study or project (Schlossberg and Shuford 2005). PPGIS has been used extensively 

since its inception in the 1990s on wide-ranging topics around public lands such as social 

values for coastal waters (Strickland-Munro et al. 2015), intersection of social needs and 

high biodiversity in Palouse Prairies (Donovan et al. 2009), capturing traditional 

ecological knowledge about fire and fuels (McBride et al. 2017), and forest plan revision 

in the Chugach National Forest (Brown and Donovan 2013).   

4.1.1 Research objectives 

Through this study, I sought to understand the range of fuel treatment 

preferences in a rural community that is increasingly impacted by wildfire and to 



 

101 
 

identify themes around those preferences through open-ended interviews and focus 

group discussions. I then investigated the potential for the use of PPGIS as a tool to 

inform scenario-building to develop alternative community-focused fuel management 

strategies for use with a dynamic FLM. Forest dynamics and wildfire were simulated 

over a 90-year period under each scenario, and outcomes were compared among 

management strategies.  

4.2 Methods 

4.2.1 Study site 

This study was conducted with members of the communities surrounding the 

Malheur National Forest in the Blue Mountains of eastern Oregon, U.S.A.  Local 

residents in the Blue Mountains have long relied upon natural resource extraction and 

utilization for their livelihoods (Shindler and Toman 2003, Hartter et al. 2014), and while 

most have lived in the region for multiple generations (Shindler and Reed 1996), recent 

trends are shifting local demographics toward a larger proportion of newcomers 

(Hamilton et al. 2016). On average, residents are well-informed on local and national 

forest issues and are well acquainted with the surrounding landscape (Shindler and 

Toman 2003). Attitudes toward prescribed fire and mechanical fuel treatments are 

typically positive, with one longitudinal study reporting 89% and 97% of survey 

respondents in support of some amount of each type of treatment respectively 

(Shindler and Toman 2003). However, individual views on forest management and 

wildfire risk vary and are influenced by a range of factors such as previous experience 
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with wildfire (Hartter et al. 2014), degree of education about forest management, and 

active engagement with public forest service/education programs (Hartter et al. 2015).  

Two collaborative forestry groups operate in the study area and bring multiple 

stakeholders together to develop recommendations for forest management. The Blue 

Mountain Forest Partners (BMFP) was established in 2006 and operates out of John Day, 

Oregon at the northern border of the Malheur National Forest; the Harney County 

Forest Restoration Collaborative has been operating in the southern portion of the 

Malheur National Forest since they were founded in 2008. These groups are made up of 

members from local ranchers, conservation groups, timber companies, environmental 

law firms, private forest owners, other local residents, and government agencies at 

local, county, state, federal and tribal levels (Sustainable Northwest 2015, Harney 

County Restoration Collaborative 2016). Their collaborative focus is on timber stand 

densities, key wildlife habitats, old growth forest, adjacent private land, and economic 

values (USDA Forest Service, Malheur National Forest 2015), and the two groups have 

been credited with creating a collaborative environment in which multiple stakeholders 

with competing agendas can come together to develop priorities and strategies for 

forest restoration and management. However, the local community is not unanimous in 

their support of the collaborative groups just as they are divided in their perceptions of 

land management agencies. 
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4.2.2 Recruitment 

To answer my research questions, I took a qualitative approach. Data were 

gathered through questionnaires, focus groups, and individual interviews. Participants 

were recruited through a variety of nonprobability sampling methods in order to sample 

across the variation within the local community. Purposive sampling (Kreuger and 

Neuman 2006) was used to identify members of collaborative forestry groups. This 

known sample contained members of a range of industries and interests around local 

forest issues (e.g., owners and employees of local timber companies, cattle ranchers, 

private forest-owners with land abutting national forest lands). Purposive sampling was 

supplemented by in-person recruitment at local establishments and through posting 

recruitment fliers in public places.  

Respondents were screened to ensure that they fit the requirements of the 

study (i.e., adults who reside in the local area and do not currently work for a federal 

land management agency). From these potential participants, a snowball sample 

(Goodman 1961, Kreuger and Neuman 2006) was initiated by asking members to 

identify other community members within their local network. Each of these potential 

participants was then contacted and asked for additional referrals. However, community 

members were often reluctant to provide contact information for others, and preferred 

to forward information about the study to their network to allow potential participants 

to contact me.  In order to ensure anonymity of participants in this small community, no 

demographic information was collected.  
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4.2.3 Focus groups 

Prior to attending focus groups, participants were asked to complete a 

questionnaire with ten open-ended questions about their uses of the Malheur National 

Forest and surrounding areas, what they think about fuel treatments, and how well they 

believe land management agencies do at incorporating public interests in the 

management of public lands (Appendix C). Participants were given the option to 

complete the questionnaire on paper or electronically via online Qualtrics software.  

Focus groups were scheduled in the town of John Day, OR between October 25 – 

27, 2016 and in Hines, OR between March 28 – 30, 2017. A total of five focus groups 

were held. Locations were selected that were not associated with any governmental 

agency and that had a room large enough to accommodate a group of up to 10 people 

comfortably. Meetings were audio recorded, and the audio was later transcribed using 

Start-Stop software. The atlas.ti software (version 7.5.12) was used to code the 

transcriptions for theme identification. 

 Meetings began with a short introductory presentation (Appendix C.4), and the 

focus group discussion proceeded with open-ended questions. To gain a picture of how 

participants related to the forest, and to help them become comfortable participating in 

the group discussion, the first question asked was, “What activities do you enjoy in the 

Malheur National Forest and the surrounding forested areas?” This was followed by 

additional pre-written questions: 
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1. What are your impressions of fuel treatments in general? Light vs. 

heavy thinning? Prescribed fire?  

2. Are there certain areas on the landscape where you are willing to see fuel 

treatments? (Identify particular features of the landscape, e.g., hiking trails, 

wildlife habitat, structures, designated conservation areas, etc…) Are there areas 

on the landscape where you are not willing to see fuel treatments? 

These questions were used to start the conversation and to refocus participants if the 

discussion strayed far from the topic of fuel management, but discussion was largely 

allowed to develop organically. After one hour, participants were offered a ten-minute 

break followed by the PPGIS mapping activity. 

4.2.4 PPGIS 

PPGIS can involve wide distribution of online digital mapping tools to volunteers 

or a purposive sample of participants where areas of importance are designated by 

placing points, drawing polygons, or using a digital “spray can,” but PPGIS can also be 

structured as a manual exercise where participants physically draw on maps to indicate 

values and preferences. The specific questions posed by the study dictate which 

methodology will be most effective in eliciting the desired data and whether the point 

or polygon method is most appropriate, as each method introduces spatial error. With 

the points method, a minimum of 350 participants are needed in order to allow the 

emergence of spatial patterns, while a study utilizing polygons may be successful with as 

few as 25 participants (Brown and Pullar 2012). 
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The purpose of this study was to combine themes identified through in-depth 

and open-ended focus group discussion with polygons that designate areas on a large 

landscape where participants prefer different types of fuel treatment. Because the 

study landscape is large at just under 1 million ha, and it would be difficult for 

participants to identify management preferences in very specific locations, polygons 

were chosen as the appropriate mechanism for spatial identification. Also, this study 

was designed to facilitate in-depth discussion with a small number of community 

members to gain rich and detailed information about their preferences for fuel 

management, and this smaller number of participants is appropriate for polygon use. 

A detailed map of the study area was divided into four quadrants, which were 

printed on 39” x 39” posters and hung on the walls around the focus group participants. 

Sheets of clear mylar plastic were taped on top of them so that participants could draw 

polygons directly onto the plastic. Colored permanent markers were used to indicate 

willingness to see light thinning, heavy thinning, or prescribed fire spatially on the 

landscape or to indicate a lack of willingness (Figure 4.1). Participants were encouraged 

to discuss their choices and work together to reach consensus about polygon 

placement. I noted where agreement occurred and where participants disagreed. See 

Appendix C.4 for all four quadrant maps and Appendix C.5 for the color code chart. 

4.2.5 Interviews 

 Three interviews were conducted. Two of these were with community members 

who wanted to participate but who were unable to attend any scheduled focus group. 
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One was via phone and one was in person. The third was with the sole attendee of one 

focus group where the other scheduled participants were not able to attend at the last 

minute. Interviewees were asked the same questions as focus group participants and 

also allowed to direct the conversation organically. However, they were not given the 

PPGIS mapping activity. 

4.2.6 Scenario development and landscape simulations 

 Utilizing the themes that emerged through focus group discussions, interviews, 

and questionnaires and the spatial information from the PPGIS activity, I developed 

three alternative management scenarios that represented the range of fuel 

management preferences identified by participants. While not every viewpoint could be 

included, my aim was to capture the upper and lower limits of participants’ preferences 

while accounting for the spatial themes identified through discussion and the mapping 

activity. To compare these community-derived strategies with current management, I 

leveraged forest management scenario development from previous research (Chapter 

2). 

Changes in forest and fuel bed characteristics over time were simulated with the 

dynamic landscape forest model LANDIS-II (Scheller et al. 2007), which is widely used to 

simulate forest succession and interactions with disturbances such as fire, harvest, wind, 

and insects (Scheller et al. 2008, Lucash et al. 2014, Duveneck et al. 2014, Kretchun et al. 

2014, 2016, Lucash et al. 2017, Loudermilk et al. 2017). LANDIS-II uses the life history 

traits of tree and shrub species, along with soil and climate data, to simulate 
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successional trajectories and responses to disturbances over time. Trees are simulated 

as species-age cohorts, which represent all individual trees of each species as a single 

group within an age range (e.g., for this study trees were grouped into 10-year age 

cohorts). Each cell represents a simulation site on the landscape of 200 x 200 meters (4 

ha), in which all forested vegetation and topographical conditions are assumed to be 

homogeneous. Sites can be active or inactive, such as in the case of open water or rocky 

outcroppings where vegetation is not expected to exist. Processes, such as 

reproduction, competition, growth, disturbance, and mortality, are simulated both 

within and between sites (see Chapter 2, Figure 2.4). LANDIS-II v6.2 was used with the 

Net Ecosystem Carbon and Nitrogen (NECN) succession (v4.2) and the Dynamic Fire and 

Fuels System (v4.0) extensions with outputs including biomass of individual species (i.e., 

species-age cohorts), fuel types, and fire severity for each individual cell on the 

landscape. The Biomass Harvest (v3.2) extension simulated tree harvest in the southern 

portions of the Malheur and Wallowa-Whitman National Forests and surrounding 

forested landscape. Harvested biomass, wildfire activity (annual area burned and fire 

severity) and forest types were compared among scenarios.  

To capture the variability within model runs related to forest and disturbance 

dynamics, I ran ten replicates of each simulation and report averages and standard 

deviation among replicates. Because greenhouse gas emissions continue to exceed the 

Intergovernmental Panel on Climate Change worst case scenarios, indicating that high 

emissions are likely to continue in the absence of a radical solution (Jennings 2013, 
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Pachauri et al. 2014), all simulations were run with daily weather conditions from high 

emission relative concentration pathway (RCP) 8.5 climate conditions using ten different 

RCP 8.5 global circulation models (GCMs; see Chapter 2 for a description of GCM 

selection). To assess differences among treatment scenarios, annual biomass harvested, 

annual area burned, and mean fire severity were compared. Biomass harvested included 

timber removed in commercial harvest, small-diameter wood removed during pre-

commercial thinning, and biomass combusted through prescribed burning. Annual area 

burned is log-normally distributed and so was transformed by the natural log. Mean 

severity is output by the Dynamic Fire and Fuels System, and is the mean severity value 

across all sites that burn within a single fire. This value is an index that indicates the 

expected fraction of the forest crown that will be burned based on the fire’s intensity 

(rate of spread), moisture levels (foliar moisture), and forest structure (crown base 

height). The severity index ranges from 1 (< 10% crown fraction burned) to 5 (> 90% 

crown fraction burned). 

4.3 Results and Discussion 

4.3.1 Participants 

The total number of community participants was 23: three participated in 

individual interviews and 20 in focus groups. Out of this total, 16 also submitted 

responses to the questionnaire. Participants reported using the forest in primarily 

recreational ways (e.g., camping, hiking, physical exercise) and ways related to the 

timber industry, followed by personal use of natural resources including hunting, fishing, 
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firewood gathering, and mushroom foraging. Cattle grazing was also common (Figure 

4.1). Participants expressed a wide range of views pertaining to fuel treatment 

preferences, and data saturation (Morse et al. 2014) was reached by the final focus 

group wherein no additional themes emerged. 

 

Figure 4.1. Participants’ questionnaire responses to the question, “What activities do you enjoy 
in the Malheur National Forest and the surrounding forested areas?” The most common answer, 
made by 14 out of 16 questionnaire respondents, was camping. Although only one respondent 
included firewood gathering, several focus group participants discussed firewood gathering as 
an activity they consider enjoyable and pursue for financial savings.  
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4.3.2 Emergent themes 

 Through focus group discussion and interviews, participants expressed views 

that linked fuel treatments to a range of topics. Discussions wove together perceptions 

of forest management, ecosystem health, and wildlife habitat with trust in government, 

economic struggles, and polarization of the local population’s political views. One 

participant summed up what he saw as the community’s overall priorities: “…there’s 

only 3 things. One is, what do the people want off the forest? Well they want jobs. Two, 

they want a place to recreate. And three, they don’t want their house to burn down.” But 

delving into how they prefer to have those needs fulfilled revealed a complex network 

of topics that shaped participants’ worldviews and consequently their views on how the 

forest should be managed. 

Through fuel treatment discussions, along with answers to the questionnaires, 

seven primary themes emerged. These themes were subdivided into 35 sub-themes 

(Table 4.1), each of which were discussed in at least two focus groups or interviews. 

Table 4.1. Emergent themes from focus group discussions, interviews and questionnaires. Each 
theme is divided into sub-themes and salient quotes are included for each theme.  

Theme Sub-Themes Salient Quotes 

Institutions  Trust 

 Collaborative forestry 
groups 

 Public input 

 Litigation 

 Government overreach 

“They do not accept any public interests. 
They merely hold meetings that are 
convenient for them… then tell lie[s] about 
what was said.” 
 
“I personally don’t know how much more 
public outreach that we expect from a 
federal agency…We have a collaborative 
group that’s nationally recognized. 
Anybody can participate in it.” 
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Decision Making  Local control 

 Expert opinion 

“I believe the local people should be in 
total control of the public lands.” 
 
“The public should hire professional 
foresters, then let them work.” 

Ecology / Forest 
Health 

 Old growth 

 21” cut limit 

 Wildlife habitat 

 Aspen decline 

 Bark beetles/pests 

 Climate change 

 Meadows/conifer 
encroachment 

 Future generations 

 Historical conditions 

“…it’s hard to talk about this landscape 
and not talk about managing for 
populations and managing for other 
things because when I think of 
management… I think about refuge for 
animals, how to keep our whole 
ecosystem healthy.” 
 

“There are good reasons to have those big 
trees around. So you have to decide when 
and where you want them… big trees in 
aspen stands, the ones that were sucking 
all the water out... you have to decide if I 
want aspen or do I want a big tree.”  

Wildfire 
Perceptions 

 Fear of fire 

 Smoke 

 Naturalness / 
inevitability of fire 

 Escaped prescribed fire 

 Insufficient fire-fighting 

 Canyon Creek Complex 
of 2015 
 

“I don’t have a problem with smoke… 
you’re either going to get it when the 
forest burns, [or] you’re going to get it 
with the prescribed fire.” 
 

“Then entered Smokey the Bear, and the 
ecosystem started to change. Mother 
Nature doesn’t sit still. We excluded fire, 
so things are changing. To just let Mother 
Nature take its course now, we will lose 
everything that we enjoy up in the forest.” 

Economics  Timber industry 

 Local unemployment / 
jobs 

 Insufficient budget 

 Mills 

“You can’t blame the environmentalists. 
We didn’t like the looks of it either. But 
everyone got rated on how well they got 
the cut out. Congress mandated it, and 
they didn’t know anything about 
managing forests. All they wanted to do 
was stimulate the economy. So that’s why 
we’re paying for it the way we are today.” 
 

“The kids are growing up, leaving and not 
coming back. The economy is gone, and I 
attribute it mostly because the mill is 
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gone. There used to be a decent wage 
living if you could grow up and go to work 
in the mills and provide for a family... and 
now, the only thing around here that will 
give you that kind of wage is a 
government job. Some of us are tired of 
paying all those people’s wages and 
seeing all the great benefits they get. The 
rest of us are straining to keep the families 
fed. So it’s a loss of local economy while 
were not harvesting.” 

Forest 
management 

 Right treatment, right 
place 

 Off-limits areas 

 Manage to prevent fire 

 Multiple use 

 Protect homes and 
infrastructure 

 Accelerated 
management 

“I don’t think the question is when and 
where on the land do you think fuel 
treatment ought to occur. It’s not about 
heavy or light treatment. It’s what’s 
appropriate for that site at this point in 
time.” 
 
“I can’t think of a single forested 
community that shouldn’t be thinned or 
burned at some point, in some way.” 

Political climate  Polarized views / 
community 
fragmentation 

 Occupation of Malheur 
Wildlife Refuge 

 Perceptions about 
what other people in 
the community think 

“…the time that I’ve been here I can feel 
the political climate is changing very 
rapidly here, and it’s having a negative 
effect on the people who live here from my 
perspective. You know, the scare of big 
government coming…” 
 

“It’s a real polarizing topic. Nobody wants 
to talk about forest management and 
wildfires. People are so integrated in this 
community and have family in the forest 
service or strictly industry people who hate 
the Forest Service and were raised to hate 
the Forest Service. And especially in our 
political climate right now everyone is 
polarizing. No one wants to talk about it.” 

  

Many of these themes are consistent with results of a longitudinal study 

conducted in the Blue Mountains in 1996 and 2000 to determine public perceptions of 

fuel treatments including mechanical tree removal and prescribed burning (Shindler and 
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Reed 1996, Shindler and Toman 2003). They found that among subjects who were 

randomly selected to complete a mailed survey, “prescribed fire and mechanical 

thinning appear[ed] to be useful and acceptable practices to most of the public” during 

the first stage (Shindler and Reed 1996), and that high levels of approval remained 

similar through the second stage, although levels of trust in the USFS had diminished 

and concern about smoke from prescribed fire had increased (Shindler and Toman 

2003). Smoke from prescribed fire remains a concern, however, most participants 

expressed that they themselves were not worried about smoke.  

Another concern was that a restoration and fuels management perspective that 

restricts cutting old trees will be problematic to forest health in the long run. This theme 

was repeated in several meetings, in some cases with nearly identical language. One 

participant put it this way: 

“If you took the human race and killed everybody under the age of 60, 
within 30 years, the human race would be completely gone. That’s what 
they are doing with the forests in my opinion. You’re killing all these small 
trees that are the trees that should be sustaining the forest and growing, 
and leaving all these great big pine that are so called 150 year old trees 
that were flat top, dead top, whatever they may be. They are leaving 
them standing, and all they do, they’re cutting everything around it. Well 
when those big trees don’t have protection, they either blow over, or they 
die from bugs or disease, or die from old age. In my opinion, they are 
doing it totally backwards. You need to harvest. I’m not saying cut every 
big tree on the forest, and I’m not saying clear cut because I don’t believe 
in that either. But you need to have a balance. You need to cut the big 
trees and you need to cut the smaller trees.” 
 
This concern was common with participants who also tended to favor 

eliminating upper size limits for cutting, who expressed concern about economic 
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downturns in the community related to lack of work, and who expressed a lack 

of trust in federal agencies. However, participants agreed that they did not 

prefer to have clearcut harvesting employed. Even participants who preferred to 

see large trees harvested for their economic value expressed a desire for some 

large, old trees to be left and for harvest to follow a multi-aged format wherein 

stands have only a portion of trees harvested in any given year and a range of 

ages are left to mature for later harvest and as seed source for natural 

regeneration. 

4.3.3 Spatial themes 

The primary response to the question of where treatments should be placed was 

that they should be placed where “appropriate,” regardless of administrative 

restrictions. There is consensus among community members that appropriate 

placement is something that should be determined by “experts,” but there is 

disagreement about who the experts are – whether they are federal fuels managers and 

silviculturists or current/former timber industry professionals and other local residents. 

One interpretation of appropriate placement was that treatments should be 

concentrated around homes: “…we need to be treating next to where people live. And 

that should be the only place we’re treating until we get that all treated.” Several other 

participants suggested that areas that are currently off-limits to most treatment, such as 

designated wilderness, roadless areas, and riparian buffer zones, should not be excluded 

from treatment up to and including some commercial harvest. On the other extreme 
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was the view that protected areas should never be treated, regardless of fuels loadings 

or other forest health issues in favor of letting “…Mother Nature take her course.” 

A number of participants expressed a preference for prescribed fire and/or 

heavy thinning to be used in dry forest, while light thinning was preferred in moist forest 

at higher elevations and on north-facing slopes. Nearly all participants, regardless of 

their overall fuel treatment philosophies, expressed their desire for treatment areas to 

be determined by need on a case-by-case basis. It was common for participants to avoid 

drawing polygons on the maps in favor of using the maps as a way to illustrate and 

discuss their overall spatial outlook. Polygons that were drawn tended to encompass 

large areas of the landscape, however they were still effective in identifying spatial 

themes for scenario development (Figure 4.2). 
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Figure 4.2. Participatory mapping examples. Dark green areas are national forest, light green are 
privately owned, and purple are areas restricted from management (e.g., designated wilderness 
and roadless areas). Solid black line indicates the study area boundary. These two overlays 
depict participatory mapping from two separate focus groups for the northeastern quadrant of 
the study landscape. Participants expressed difficulty identifying specific areas on the landscape 
where they had fuel treatment preferences, but were able to use the maps to illustrate their 
thematic preferences. Most groups were able to obtain consensus, but preferences about 
management in wilderness areas were the most divisive. Preferences in wilderness areas 
ranged, even within single group, from no treatment to commercial harvest (a.) Many 
participants expressed a willingness to see light thinning (e.g., pre-commercial thinning) and 
prescribed fire on most areas of the landscape, including wilderness areas for areas with high 
fuel loading (b.), and many were open to any kind of treatment anywhere on the landscape if it 
was deemed appropriate for meeting ecological, fire management, and/or economic goals. 

 

4.3.4 Management scenario development 

From these topical and spatial themes, I developed two management scenarios 

that present the range of values and preferences expressed by participants, which are 

titled the Restoration and Economic scenarios. These scenarios were compared with a 

scenario designed to emulate current management practices called Business As Usual 

(BAU). (See Chapter 2 for a description of the BAU management scenario.) 

The Restoration scenario focuses on improving forest resilience to fire without 

any commercial harvest by reducing small-diameter horizontal and vertical fuel 

loadings. An approximately equal area was treated as with the BAU scenario, but only 

pre-commercial thinning (PCT) and prescribed fire (RxFire) were employed. In the 

national forest, 9% of non-restricted forested area was treated with PCT every decade 

and RxFire was applied to 3% of forested area. Bureau of Land Management and Oregon 

Department of Forestry-managed lands were treated with PCT on 7% of their forested 
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lands per decade. No treatments were done in riparian areas or wilderness/roadless 

areas. Private timber remains as described in BAU. 

The Economic scenario was designed to emulate short-rotation multi-aged stand 

management (O’Hara 2005) on a 50-year rotation. Although clearcutting and re-planting 

was the predominant silvicultural system employed through the early 1980s 

(Youngblood 2005), I did not include clearcutting in this scenario because focus group 

participants expressed a preference for uneven-aged management with overstory 

removal of the largest and most economically valuable trees. They also expressed the 

desire for some old trees to be left, so 10 of the oldest age cohorts were left 

unharvested for wildlife habitat, old forest structure, and social enjoyment. Although 

individual trees of Engelmann spruce, whitebark pine, or subalpine fir may be harvested 

commercially, it is unlikely that logging companies would remove entire cohorts of these 

species, so these species were left unharvested in simulations. Many participants 

expressed a desire to see light fuel treatments in areas with high fuel loads including 

areas that are currently off-limits, so I included pre-commercial thinning, prioritized by 

dense fuelbeds of small diameter trees and shrubs, in the federal landscape at large, in 

riparian areas, and in wilderness and roadless areas. No RxFire was included, however, 

as many participants who were interested in an economically-driven harvest model 

expressed feeling that prescribed fire wastes natural resources by consuming wood they 

would prefer see used for non-timber wood products. Even participants who wanted to 

open up wilderness areas to harvest tended to express an appreciation for the 
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“untouched” feeling of those areas and did not advocate for aggressive harvest there. 

Therefore, I set decadal harvest to just 5% of wilderness/roadless areas with another 5% 

being treated to reduce fuels. Because of concerns about fuels and conifer 

encroachment in riparian areas, I assigned 10% of riparian areas to be pre-commercial 

thinned and another 10% to be open for commercial harvest. 

Table 4.2. Harvest scenario descriptions. Restoration and Economic scenarios were designed 
using data gathered during focus groups with community members. The Business as Usual (BAU) 
scenario reflects pre-commercial thinning (PCT), harvest, and prescribed fire (RxFire) 
prescriptions currently employed by land management agencies. Annual area harvested/burned 
includes all management areas including privately owned and reflects the first decade of 
simulated treatments averaged over ten replicates. Over time, the area fluctuated with the 
availability of suitable forest composition and age due to prior harvest and wildfire mortality. 
RxFire area includes burning of previously harvested stands ten years after harvest (BAU and 
Restoration scenarios only). 

Scenario Prescription Goals Off-Limit Areas Annual Area 

Harvested/RxFire per 

Decade 

Restoration  Focus on improving 

forest resilience to 

wildfire through fuels 

reduction and 

restoration of an older 

stand structure. 

 No commercial harvest. 

 Wilderness 

 Roadless Areas 

 Riparian Habitat 

Conservation 

Areas 

PCT: 35196 ha 

 

Harvested: 7,214 ha 

     (on private lands only) 

 

RxFire: 48,420 ha 

Business as 

Usual 

 Improving forest 

resilience to wildfire by 

reducing fuels and 

managing for 

ponderosa pine is the 

primary goal. 

 Commercial harvest is a 

secondary goal. 

 No harvest of trees 

over 21” DBH. 

 Wilderness 

 Roadless Areas 

 Riparian Habitat 

Conservation 

Areas 

PCT:  13,296 ha 

 

Harvested:  55,351 ha 

 

RxFire:  39,391 ha 
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Economic  Short-rotation, multi-

aged commercial 

harvest. 

 Harvest large, valuable 

trees of commercially 

viable species. 

 No limit to tree size 

that can be harvested. 

 

 None PCT: 21,890 ha 

 

Harvested: 116,584 ha 

 

RxFire: 0 ha 

 

4.3.5 Simulation results 

Under the Economic scenario, more than three times the amount of biomass 

was harvested than under the BAU scenario and more than six times that of the 

Restoration scenario (Figure 4.3). Despite removing higher levels of biomass and 

harvesting about 50,000 ha more per decade, this did not translate to reduced fire risk. 

Although the Economic scenario included some pre-commercial thinning, most biomass 

that was targeted for harvest was from older age-cohorts and therefore its removal had 

less impact on shifting distributions of annual area burned or wildfire severity than 

removal of the smaller diameter, more flammable biomass targeted for fuels treatment 

in the Restoration scenario. While there was no statistically significant difference in area 

burned or wildfire severity among treatment types, the Restoration scenario produced 

consistently lower area burned than the other two scenarios (Figure 4.4a) and had lower 

mean area burned during the last 30 years of the century (Figure 4.4b). This was also 

true for wildfire severity, with the lowest mean severity under the Restoration scenario 

and the highest under the Economic scenario (Figure 4.5). 
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Figure 4.3. Average annual biomass harvested over time for each of the fuel treatment/harvest 
scenarios. Solid lines show the mean and the ribbon reflects the 5th and 95th percentile across 
replicates. Harvested biomass amounts were dependent upon the amount of biomass available 
in the designated species-age cohorts for each scenario’s prescriptions. The Restoration scenario 
removed only young cohorts of trees through pre-commercial thinning and prescribed fire for 
the purpose of reducing fuel loading. The Business as Usual scenario (BAU) included a 
combination of commercial harvest with pre-commercial thinning and prescribed fire at 
approximately a 100-year rotation. The Economic scenario was designed to commercially 
harvest the landscape on a 50-year rotation and maintain a multi-aged stand structure. It also 
included a small amount of pre-commercial thinning for areas with the highest fuel loadings, but 
did not include any prescribed fire. Biomass amounts are summed across all harvest events over 
each decade and are shown in millions of megagrams. 
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Figure 4.4. Annual area burned under each treatment/harvest scenario. Over the 90-year 
simulation period (a.) mean area burned increased for the first half of the century under all 
harvest scenarios with the greatest increases under Business and Usual and the least under 
Restoration. Area burned under the Restoration scenario, which focused on fuels reduction, was 
the most consistent. During the latter half of the century, area burned increased slightly under 
Restoration and decreased under the more aggressive harvest scenarios. Solid lines indicate the 
running mean with a loess smoothing curve. During the last 30 years (b.) there was no 

a

b. 
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significant difference in mean annual area burned (F = 0.03, p = 0.97). For the boxplot, area 
burned data are transformed by the natural log. Boxes encompass the 25th and 75th percentiles, 
whiskers extend to 1.5 times the interquartile range, and circles indicate outliers. Solid line is the 
median, and mean values are reported at the top of each box. 

 

 

Figure 4.5. Mean fire severity for the final 30 years of landscape simulations (2070 – 2100). 
There was no significant difference in fire severity regardless of the fuel treatment/harvest 
scenario (F = 0.796, p = 0.46), although the Economic scenario had the greatest variability. The 
Restoration treatment’s upper range was similar to Business as Usual, but the lower range 
illustrates the potential benefit that increased amounts of prescribed fire may indicate for 
reducing landscape-level fire severity. Boxes encompass the 25th and 75th quartiles and the 
whiskers extend to 1.5 times the interquartile range. Solid line is the median, and mean values 
are reported at the top of each box. 

 

 

 

 

 

 



 

125 
 

Table 4.3. Wildfire metrics for the last 30 years of simulations (2071-2100). Values reflect the 
mean and standard deviation (in parentheses) across 10 replicates for each scenario. Mean fire 
severity is reported on a scale of 1 (0% potential mortality) to 5 (100% potential mortality) for all 
sites that burned during that period. There was no statistical difference in mean severity (F = 
0.796, p = 0.46) or annual area burned (F = 0.028, p = 0.97) among treatment scenarios. 

Scenario Mean Fire Severity Annual Area Burned (ha) 

Restoration 3.41 (0.18) 12,709 (36,753) 

BAU 3.46 (0.15) 12,768 (50,626) 

Economic 3.51 (0.23) 13,202 (42,212) 

 

 Nearly all participants expressed a desire for forest management to promote 

“healthy” forests. When asked for more details, in addition to fire-safe forests, many of 

them listed their perspectives on health to include diverse forests and a variety of forest 

patches, maintaining sensitive tree species such as aspen and whitebark pine, quality 

habitat for wildlife species, especially species associated with fishing and hunting, and 

maintaining a “natural” forest in wilderness areas. While many of these goals were 

outside the scope of this study’s simulation capability, I assessed the effect of each 

management scenario on the persistence of high-elevation forest. The results from 

Chapter 2 show steep declines in high-elevation species including Engelmann spruce, 

whitebark pine, and sub-alpine fir under all climate scenarios. Under the high emissions 

scenario, biomass of these three species dropped nearly 50% in the first three decades.  

 While none of the management strategies prevented high-elevation forest loss, 

the Restoration scenario performed the best in terms of prolonging persistence on the 

landscape at the 30-year mark (Figure 4.6). By the end of the century, area with high-
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elevation forest had declined by about 90% for all management scenarios, with the 

greatest losses in the BAU scenario (Figure 4.7). Biomass reductions for these species 

were associated with repeated burns, especially on steep slopes, which is accounted for 

by the lower area burned and fire severity under the Restoration scenario. 
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Figure 4.6. Maps of forest type and high-elevation forest loss over time. Initial distribution of 
forest types is shown in the top map (year 2010). Forest type distribution is shown at year 2040 
and year 2100 for each management scenario. Under all scenarios, dry forest expands its range 
both into low-lying shrublands and into high-elevation sites while high-elevation forest 
containing Engelmann spruce, whitebark pine, and sub-alpine fir declines. Persistence of these 
species was highest under the Restoration management scenario, but none of the management 
strategies prevented losses in this forest type by the end of the century. 

 

 
 

Figure 4.7. High-elevation forest declines under all management scenarios. In the short-term, 
the Restoration strategy preservers the greatest area of high-elevation forest and the Economic 
strategy preserves the least. However, by the end of the century, high-elevation forest occurs on 
less than 1,200 ha regardless of management. 

 

These differences in harvested biomass, wildfire activity, and sensitive forest 

persistence provide an opportunity to think about tradeoffs. While the Restoration 

scenario accomplishes somewhat lower wildfire activity, it does not provide economic 

inputs through timber harvest. The Economic scenario provides commercial harvest of 
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timber, providing economic inputs to the community, but it does not remove dense 

fuels of small-diameter trees and shrubs and therefore does not improve fire outcomes. 

Current management levels include both fuels reduction and timber harvest, but do not 

accomplish either objective to the satisfaction of the local community. However, 

present efforts by the USFS to accelerate the pace of forest restoration are clear 

evidence of their desire to increase the amount of management for the benefit of both 

forest health and economic stimulus. One example is the Southern Blues Restoration 

Coalition Collaborative Landscape Restoration Project, which brings together agency 

managers and scientists, conservation groups, members of the timber industry, and 

local residents to identify management projects, develop management plans, and work 

with the USFS for implementation. Funded through the Collaborative Forest Landscape 

Restoration Program (Butler et al. 2015), in the first four years of the project they 

treated nearly 18,000 ha with a combination of commercial harvest, restoration 

thinning, and prescribed fire (Southern Blues Restoration Coalition 2015).  Another 

example is the Blue Mountains Forest Resiliency Project, which is part of the USFS 

strategy to support both forest and community health by managing for forest resiliency 

to fire and climate change on more than half a million acres in the neighboring Ochoco, 

Umatilla, and Wallowa-Whitman National Forests (USDA Forest Service 2016b). 

However, current levels of management are not seen as satisfactory by some members 

of the community in terms of either fuels management or commercial harvest. 
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 Buchy and Noverman (2000) said that, “power is central to participatory 

forestry.” This sentiment rings true through this study, especially where “power” is 

another way to think about the ability to make decisions. The history of the timber 

industry in the region contains dual narratives that are adopted simultaneously by the 

community. In one narrative, the timber industry of the mid-19th century operated 

successfully and built a strong community with economic sustainability until 

government-led environmental objectives began to outweigh economic ones and the 

industry collapsed. In the other, Congressional mandates led the timber industry to 

overharvest, taking too many of the large trees and paving the way for thickets of young 

trees and a greater proportion of fire sensitive species. In both of these narratives, the 

central theme is the power of decision making being wrested from the local community 

by a centralized, far-off government. There is no doubt that on public lands the decision-

making authority lies in the hands of whichever government agency has the 

responsibility of management. However, the opportunities for public participation and 

comment, both individually and as part of a formal collaborative forestry group, are 

plentiful. The community is divided in their views of the usefulness of that participation, 

which points to the need not only for additional outreach by government agencies but 

also for more showcasing of the outcomes of collaboration. 

4.3.6 Limitations 

 There are several approaches to PPGIS studies that result in data in different 

formats, namely points or polygons, each of which have strengths and weaknesses 
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(Brown and Pullar 2012). Mapping data can be collected in person, as done in this study, 

through the mail (as in Nielsen-Pincus et al. 2010) or electronically (as in Brown and 

Donovan 2013). When designing this study, I considered all of these options in the 

context of the study community and by consulting with other researchers and leaders in 

the community. I decided that in-person focus groups would garner more in-depth 

information and salient quotes than a mailed or online survey and that because the local 

population is under 10,000 including the ten nearest town communities (US Census 

Bureau, 2016) that it would be difficult to recruit a sufficient sample of the population 

to produce a satisfactory number of points on an electronically-collected PPGIS map. For 

these reasons I elected to conduct the mapping activity in conjunction with the focus 

groups.  

The data gathered were useful, and the mapping activity served as a catalyst to 

apply participants’ overall philosophies about fuel treatments to the landscape, but 

many participants expressed discomfort with drawing polygons and in fact some refused 

to do so. Those who did not draw nevertheless used the maps to point out areas that 

they felt should or should not be treated, and the maps served to facilitate additional 

conversation about fuel treatment preferences. In this way, they were a useful tool for 

developing spatial strategies for alternate management scenarios. However, I feel that 

directly using polygons on this size of landscape (nearly 1 million hectares) was not 

successful as a direct way to delineate management areas. Future research should 
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consider including an online mapping exercise that may reach a greater number of 

participants. 

Another challenge in qualitative research is ensuring sufficient sampling of the 

population of interest. For this study, I was interested in capturing the range of fuel 

treatment preferences within the local community around the Malheur National Forest. 

Therefore, the results of this study should not be considered to be generalizable to 

other rural populations. I did not seek out the viewpoints of stakeholders who do not 

reside in the area, so these results do not reflect, for instance, the viewpoints of 

individuals from conservation groups that participate in the public input process for 

projects that occur on the Malheur but who do not reside locally.  

4.4 Conclusion 

Most focus group participants agreed that they want to see more, not less, 

management on the landscape, and this sentiment crossed philosophical boundaries. 

For some participants, increased management meant more economic opportunity 

through commercial harvest. For others the focus was on restoration of old forest 

structure and fuels reduction to create forests that are more resilient to wildfire. And 

for most, they prioritized both of these benefit categories. Current management utilizes 

a range of strategies including fuels reduction and commercial harvest in conjunction 

with managing for wildlife habitat, old growth structure, meadow and riparian 

restoration, and other multiple-use objectives but is constrained by limits in both 

budget and in social acceptability. If communication between the agencies and the 
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community increases, facilitated by the collaborative forestry groups, cooperation may 

help both entities meet their forest and fuels management goals.  
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Chapter 5 – Conclusions 

Increasing incidence of large severe wildfires in the western U.S. is a multi-tiered 

“wicked” problem, and decisions about its management require both a multi-tiered 

approach and an understanding of future trajectories and implications of these elevated 

levels of wildfire activity. Wildfire has impacts on both ecological and social systems, 

and likewise, forest management decisions have long-lasting effects on both forests and 

people. This study took a three-pronged approach to investigating the effects of wildfire 

and forest management at the landscape scale in a dry mixed-conifer landscape in 

eastern Oregon, U.S.: 1. How will climate change and wildfire interact with forest 

dynamics, and how will those interactions differ under the range of projected climate 

conditions? 2. How well do fuels management strategies perform under the extreme 

weather conditions that are becoming more frequent, and can we maintain their 

effectiveness while spatially optimizing treatment placement? and 3. What are the 

range of viewpoints about fuels management in a rural community affected by wildfire, 

and are there areas of agreement that can provide a win-win strategy for fuels 

managers who need to satisfy both ecological and social imperatives? 

In the first chapter, in order to understand the interactions between weather, 

forest dynamics, and wildfire under the range of projected climate futures, I simulated 

forest and fire disturbance under three climate scenarios: contemporary weather and 

projected weather under moderate (RCP 4.5) and high (RCP 8.5) climate change models. 

These simulations were run for 90 years, and the last 30 years of wildfire and forest 
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composition data were analyzed to capture the differences after historical and 

projected weather trends diverged. I found that under climate change, wildfire activity 

was more frequent, more widespread, and more severe than under contemporary 

conditions, however, there was not a significant difference between moderate and high 

emissions scenarios. This was a reflection of the overlapping ranges of temperature and 

precipitation conditions projected under different global circulation models for each of 

the relative concentration pathways. 

Second, I tested the effects of alternate management strategies on wildfire 

activity to determine the added benefits of treating in riparian areas or adding 

additional prescribed fire as well as to determine the relative effectiveness of 

constraining spatial placement of treatments in areas at the most risk for high-severity 

fire. At the landscape level, fuel treatments in riparian areas and doubling the annual 

area treated with prescribed fire was insufficient to modify wildfire behavior. Tripling 

the annual area treated with prescribed fire was required to shift patterns of fire spread 

and severity. While this is a substantial increase from the area treated today, prescribed 

fire is a less expensive supplement to mechanical treatments and provides additional 

ecological benefits in historically fire-maintained forests. While spatial optimization of 

mechanical treatments in areas at the greatest risk for high-severity fire was equally 

effective in reducing wildfire activity at the landscape-scale when compared with 

distributed treatments, it was not effective to constrain prescribed fire in those 

locations. Distributing prescribed fire across the landscape was substantially more 
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effective. The greatest barrier to increasing the rate of prescribed fire is social 

acceptability, and distributing prescribed fire broadly will increase its visibility and 

potential for public opposition. This points to a greater need for increased public 

outreach and education about the benefits of prescribed fire for local forest health and 

for public safety. 

 Finally, in order to ascertain the range of community preferences around fuels 

management, I conducted focus groups and interviews with local residents and used a 

public participation geographic information systems (PPGIS) activity to delineate the 

breadth and the overlap of preferred strategies. I used this information to develop 

alternative fuels management scenarios: light treatment that used only prescribed fire 

and pre-commercial thinning to reduce fuel loading (Restoration), business as usual 

management that employed prescribed fire, pre-commercial thinning, and some 

commercial harvest (BAU), and multi-aged commercial harvest on a 50-year rotation 

(Economic). I compared the decadal biomass harvested in these treatments as well as 

their effects on wildfire activity and the distribution of forest types on the landscape. I 

found that the Economic scenario harvested three times the biomass as BAU and six 

times the biomass as Restoration, but this exercise does not reflect local capacity to 

handle large amounts of timber. Therefore this strategy would necessitate additional 

local mills to be opened and operated or for the timber to leave the community and be 

processed at mills in other locations. The Restoration strategy would not require any 

timber processing as no commercially viable trees would be cut, but it would produce a 
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large amount of non-commercial woody debris that could be used for non-timber wood 

products such as biomass for energy.  

 Although there was a large difference in the amount and age-classes of biomass 

removed in each scenario, there was no significant difference in wildfire activity over 

the 90-year simulation period. Annual area burned was lowest and the most stable 

under the Restoration scenario, likely because this strategy consistently treated just 

over 1% of the landscape per year with a specific focus on reducing fuels to increase 

stand mean diameter and height to live crown. Area burned increased slowly over the 

simulation period as tree reproduction outpaced the rate of treatment. Although not 

statistically significant, fire severity was also the lowest under the Restoration scenario. 

For the first half of the century, the Economic scenario had lower area burned than BAU, 

but after 55 years, area burned overtook that of BAU, indicating that the focus on 

extraction of commercially-sized trees over intentionally targeting areas with high fuel 

loading was not sustainable over the long term.  

Also notable, the Economic scenario allowed a small amount of commercial 

harvest and some pre-commercial thinning in wilderness areas. While it was 

hypothesized that this strategy could benefit high-elevation forest, which occurs most 

often in wilderness areas and is susceptible to high-severity fires, that was not the 

outcome. The results of Chapter 2 found that under climate change this forest type 

would largely disappear from the landscape within about 30 years, and this was linked 

with repeated fires in high-elevation sites with steep slopes. The idea that allowing 
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some treatment in wilderness areas could prolong this sensitive forest was not 

supported by the simulation results, as the Economic strategy resulted in the least 

amount of high-elevation forest persistence after 30 years, while the Restoration 

scenario performed the best. These results confirm the supposition in Chapter 2 that 

these forests may be faced with an inevitable loss of these climate- and fire-sensitive 

species. 

This dissertation documented the trajectory of wildfire activity and forest 

composition changes under the range of projected future climate conditions, assessed 

the relative effectiveness of fuel treatment strategies, and explored the potential for 

treatment strategies that reflect the range of preferences held by local residents. It is 

clear that forest change related to climate change and disturbance is inevitable and that 

while management is imperative to minimize damages from wildfire to ecological and 

social systems, large wildfires will be a continuing disturbance on this landscape. Future 

increases in ponderosa pine dominance may act as a mediating force on future wildfire 

spread, but losses in tree species richness and heterogeneity on the landscape have 

implications for other disturbances and social values. Forest managers will need to 

carefully consider priorities around the economics of fuel treatments as well as the long-

term impacts of decisions that are made today. 
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Appendices 

Appendix A. Supplemental material 

All input files for the LANDIS-II model and all code used to analyze output data 

are freely available online at https://github.com/brookecassell/Project-

Malheur_Fuels_Treatment.git Software needed to utilize these inputs are R and LANDIS-

II.  

https://github.com/brookecassell/Project-Malheur_Fuels_Treatment.git
https://github.com/brookecassell/Project-Malheur_Fuels_Treatment.git
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Appendix B. Institutional Review Board Approval 
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Appendix C. Focus group and participatory mapping materials 

C.1 Informed consent cover letter for anonymous questionnaire 

 

 

Assessing Stakeholder Preferences for Fuel Treatments in the Southern Blue 

Mountains, Oregon  

 

 

You are being asked to participate in a research study that is being done by Robert 

Scheller, who is the Principal Investigator and Brooke Cassell, who is the Graduate 

Student Investigator, from the Department of Environmental Science and Management, at 

Portland State University in Portland, Oregon. This study is part of the PhD dissertation 

research of Brooke Cassell. The purpose of the study is to better understand how 

stakeholders in the management of the Southern Blue Mountains, OR region view fuel 

treatments and what their spatial preferences are for fuel treatment placement on the 

landscape. You are being invited to participate in this study because you have expressed 

an interest in how forested lands are managed in the Southern Blue Mountains, Oregon. 

Funding for this project is from the Joint Fire Science Program Project #14-1-01-2 and an 

Edward D. and Olive C. Bushby Scholarship from Portland State University for graduate 

student research.  

 

Your participation will involve completing the following questionnaire. The 

questionnaire should take about 30 minutes to complete. Your involvement in the study is 

voluntary, and you may choose not to participate. You can decline to answer any of the 

questions at any time and for any reason. There are no known risks in this study, but 

some individuals may experience discomfort when answering questions. There are no 

costs to you for participating in this research.  

 

This questionnaire is anonymous. If you choose to complete the questionnaire on paper 

and mail it to the researchers, your questionnaire will be transcribed to an electronic 

spreadsheet and the paper copy destroyed. If you choose to complete the questionnaire 

online, we will not collect your computer’s IP address or link your personal information 

to your answers, however, absolute anonymity cannot be guaranteed over the internet. All 

data will be kept for 3 years in a password protected computer in Cassell’s office and 

then destroyed. No one will be able to identify you or your answers, and no one will 

know whether or not you participated in the study. Individuals from the Institutional 

Review Board may inspect these records.  

 

There will be no direct benefits to you for participating in this research, but results of this 

study should provide more general benefits. The findings from this project will provide 

information on how different stakeholders view fuel treatments, and how fuel treatments 

that reflect stakeholder preferences may compare with other types of fuel treatment 
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placement at reducing wildfire activity. If published, results will be presented in summary 

form only, and no individual information will be disclosed. If you wish, you may provide 

your email address to which you will be sent a web address where you can access the 

summary results of this research. 

 

If you have any questions about this research project, please contact Brooke Cassell at 

(815) 814-2260.  If you have questions regarding your legal rights as a research subject, 

you may contact: 

 

PSU Institutional Review Board 

Office of Research Integrity 

1600 SW 4th Ave., Market Center Building, Ste. 620 

Portland, OR 97201 

(503) 725-2227 or 1 (877) 480-4400. 

 

 

Thank you for your participation. 

 

Sincerely, 

 

 

 

Brooke Cassell 

PhD Student 

Portland State University 

Environmental Science and Management 

 

 

Your participation in this questionnaire is voluntary. By completing this 

questionnaire/returning this questionnaire, you will be agreeing to participate in the above 

described research study.  

 

Optional: If you wish to view the summarized research results, please provide your email 

address here. If you choose to provide your email address, it will be kept in a password-

protected spreadsheet on a password-protected computer in a locked office. After you are 

contacted with the summarized research results, we will delete your email address from 

our database. Your email address will not be shared with any other entity, nor will it be 

used for any purpose other than that stated here. 

 

__________________________________________________ 

Email Address 
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C.2 Questionnaire 

ASSESSING STAKEHOLDER PREFERENCES FOR FUEL TREATMENTS IN THE SOUTHERN 
BLUE MOUNTAINS, OREGON 

We are asking you for your help with a research project that aims to understand 

stakeholder perceptions about fuel treatments and preferences for types and locations 

of fuel treatments in the Southern Blue Mountains in Oregon.  We would like your 

feedback specifically related to the area shown on the map, which includes the portions 

of the Malheur and Wallowa-Whitman National Forests and the land immediately 

surrounding them south of US Route 26 and north of US Route 20. 

 
The study involves completing a 

questionnaire followed by 

participating in a focus group 

and mapping activity. The focus 

groups will be held in mid- to 

late-October, 2016. Insights 

from this questionnaire will help 

improve our understanding of 

how different community 

members utilize public lands and  

will give us insight into stakeholder perceptions of fuel treatments. 

 
You can complete this questionnaire on paper or online. If you choose to complete it 

online, please do so at this website address: 

https://portlandstate.qualtrics.com//SE/?SID=SV_6A1QWlfepmc6STX and enter the 

password BLUEMOUNTAINS as well as the participant number found at the top right-

hand corner of this page when prompted. If you choose to complete it on paper, please 

return the questionnaire to me in the self-addressed, postage-paid envelope enclosed. 

The study area. 
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The questionnaire consists of 4 pages in total and should take no more than 30 minutes 

to complete.  If you need additional space to answer any questions, please use the back 

side of the survey and/or attach additional pages and indicate the number of the 

question you are answering. 

 
Note that this questionnaire only aims to explore your preferences in land uses and fuel 

treatments and is not designed as a test of your knowledge about land use or fuel 

treatments. You may skip any question(s) that you do not wish to answer. 

 

Confidentiality: Your answers are anonymous, and all information will be consolidated. 

No information gathered will be directly linked to an individual, and any information you 

provide cannot be used against you in any way.  

 

CONTINUE TO NEXT PAGE 
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Questionnaire Begins Here 
 

1. In 2-3 sentences, please describe your primary relationship with the Malheur 

National Forest and surrounding areas.  

 

2. What activities do you enjoy in the Malheur National Forest and the surrounding 

forested areas? These can be work related or recreational. Please be as specific as 

possible and list as many activities as you can think of.  
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“Fuel treatments” are management actions intended to reduce wildfire activity. They 

reduce the fuel available to a wildfire, and can prevent the spread of fire from tree to 

tree and across large areas including areas with homes and other structures. There are 

different types of fuel treatments, and some of them include light thinning (harvesting 

only small trees), heavy thinning (harvesting both small and large trees) and prescribed 

burning (lighting small fires to consume fuels on the ground).  

 

Photos of each treatment type are below:  

Example of light thinning.     Example of heavy thinning.  Example of prescribed fire. 

 

 

3.a. Thinking about these types of fuel treatments, when and where on the landscape 

do you think that fuel treatments are important?  

 

 

 

 

 

3.b. Which, if any, of these types of fuel treatments are you willing to see on the 

Malheur National Forest and the surrounding areas? 

 

 

 

 

CONTINUE TO NEXT PAGE 

3. Wildfires are fires that ignite naturally or accidentally. They consume fuels, and can 

be considered a “passive fuel treatment” by changing the forest’s structure and 

reducing the amount of fuels available to future fires. In addition, wildfires provide 
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some benefits to forested landscapes by making nutrients such as nitrogen available 

to plants, creating wildlife habitat, and improving forage plants for grazing animals.  

 

When and where on the landscape do you think that fires should be allowed to burn, 

as long as they do not threaten any homes or other development? 

 

 

 

 

4. How do you believe public input should be incorporated into management of public 

lands?  

 

 

 

 

 

 

5. How well do you think land management agencies do at incorporating public 

interests in management of public lands? 

 

 

 

 

 

 

6. How have your opinions about land management agencies changed over the past 

several years? 

 

 

 

 

CONTINUE TO NEXT PAGE 

7. Thinking now about community members in Baker, Grant, Crook and Harney 

Counties, what are the general opinions about how public input should be 

incorporated into management of public lands? 
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8. How well do community members in Baker, Grant, Crook and Harney Counties think 

land management agencies do at incorporating public interests in management of 

public lands? 

 

 

 

 

 

 

9. How have general opinions about land management agencies changed over the past 

several years in Baker, Grant, Crook and Harney Counties? 

 

 

 

 

 

 

 

THIS CONCLUDES THE QUESTIONNAIRE. PLEASE RETURN THE ENTIRE PACKET TO THE 

RESEARCHERS IN THE SELF-ADDRESSED, POSTAGE-PAID ENVELOPE PROVIDED. IF YOU 

WISH TO BE NOTIFIED OF THE RESULTS OF THIS STUDY, PLEASE PROVIDE YOUR EMAIL 

ADDRESS HERE: 

____________________________________________________ 

 

THANK YOU FOR YOUR PARTICIPATION. 
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C.3 Focus group consent form 

 

The Portland State University  
Consent to Participate in Research 

Assessing Stakeholder Preferences for Fuel Treatments in the Southern Blue 

Mountains, Oregon  

Introduction 

You are being asked to participate in a research study that is being done by Robert Scheller, 
who is the Principal Investigator and Brooke Cassell, who is the Graduate Student 
Investigator, from the Department of Environmental Science and Management, at Portland 
State University in Portland, Oregon. This study is part of the PhD dissertation research of 
Brooke Cassell. The purpose of the study is to better understand how stakeholders in the 
management of the Southern Blue Mountains, OR region view fuel treatments and what 
their spatial preferences are for fuel treatment placement on the landscape.  You are being 
invited to participate in this study because you have expressed an interest in how forested 
lands are managed in the Southern Blue Mountains, Oregon. Funding for this project is from 
the Joint Fire Science Program Project #14-1-01-2 and an Edward D. and Olive C. Bushby 
Scholarship from Portland State University for graduate student research. 

This form will explain the research study, and will also explain the possible risks as well as 
the possible benefits to you. We encourage you to talk with your family and friends before 
you decide to take part in this research study. If you have any questions, please ask one of 
the study investigators. 

What will happen if I decide to participate? 

If you agree to participate, the following things will happen: 

You will be asked questions about the ways in which you use the landscape in the southern 
Blue Mountains region and about your views about fuel treatments. You will be asked to 
draw on maps to illustrate the areas on the landscape where you are willing or not willing to 
have fuel treatments implemented and to describe the reasons why you feel that way. 

The focus group will be recorded using a digital audio recording device. Following the 
session, the audio will be transcribed into a word processing document, and the audio 
recording will be destroyed. No names or other identifying information will be included in 
the transcription. 

How long will I be in this study? 

Participation in this study will take a total of 2 hours over a period of 1 day. 

What are the risks or side effects of being in this study? 
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There are risks of stress, emotional distress, inconvenience and possible loss of privacy and 
confidentiality associated with participating in a research study. 

For more information about risks and discomforts, ask the investigator. 

 

What are the benefits to being in this study? 

 

There will be no direct benefits to you for participating in this research, but results of this 
study should provide more general benefits. The findings from this project will provide 
information on how different stakeholders view fuel treatments, and how fuel treatments 
that reflect stakeholder preferences may compare with other types of fuel treatment 
placement at reducing wildfire activity. 

 

How will my information be kept confidential? 

We will take measures to protect the security of all your personal information, but we 
cannot guarantee confidentiality of all study data. The audio recording will be transcribed, 
and the transcription will not include your name or any other identifying information. 
Following transcription, the audio recording will be destroyed. If published, results will be 
presented in summary form only, and no individual information will be disclosed. 

Participation in a focus group does not allow for the same level of confidentiality as other 
forms of research. The investigator can only be responsible for the confidentiality of the 
data collected by that investigator, and confidentiality may be breached by others in the 
focus group. As a participant in the focus group, you are encouraged not to speak of what 
was discussed during the group once the group has ended. 

Information contained in your study records is used by study staff. The Portland State 
University Institutional Review Board (IRB) that oversees human subject research and/or 
other entities may be permitted to access your records, and there may be times when we 
are required by law to share your information. It is the investigator’s legal obligation to 
report child abuse, child neglect, elder abuse, harm to self or others or any life-threatening 
situation to the appropriate authorities, and; therefore, your confidentiality will not be 
maintained. 

Your name will not be used in any published reports about this study. 

Will I be paid for taking part in this study? 

 

No. 
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Can I stop being in the study once I begin? 

Your participation in this study is completely voluntary. You have the right to choose not to 
participate or to withdraw your participation at any point in this study without penalty or 
loss of benefits to which you are otherwise entitled. 

Whom can I call with questions or complaints about this study? 

If you have any questions, concerns or complaints at any time about the research study, 
Brooke Cassell will be glad to answer them at (815) 814-2260. 

Whom can I call with questions about my rights as a research participant? 

If you have questions regarding your rights as a research participant, you may call the PSU 
Office for Research Integrity at (503) 725-2227 or 1(877) 480-4400. The ORI is the office that 
supports the PSU Institutional Review Board (IRB). The IRB is a group of people from PSU 
and the community who provide independent oversight of safety and ethical issues related 
to research involving human participants. For more information, you may also access the 
IRB website at https://sites.google.com/a/pdx.edu/research/integrity. 

CONSENT 

You are making a decision whether to participate in this study. Your signature below 
indicates that you have read the information provided (or the information was read to you). 
By signing this consent form, you are not waiving any of your legal rights as a research 
participant. 

You have had an opportunity to ask questions and all questions have been answered to your 
satisfaction. By signing this consent form, you agree to participate in this study and to be 
recorded by an audio recording device. A copy of this consent form will be provided to you. 

____________________________ ____________________________ ___________ 

Name of Adult Subject (print) Signature of Adult Subject Date 

 

INVESTIGATOR SIGNATURE 

This research study has been explained to the participant and all of his/her questions have 
been answered. The participant understands the information described in this consent form 
and freely consents to participate. 

_________________________________________________  
Name of Investigator/ Research Team Member (type or print) 

_________________________________________________ ___________________ 

(Signature of Investigator/ Research Team Member) Date 
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C.4 Introductory presentation to focus group participants 
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C.5 Maps used in participatory mapping exercise 

These maps were printed out on large-format poster paper and hung on the 

walls of the focus group locations. The solid black line delineates the study area, the 

dark green border bounds national forest lands, and purple designates areas that are 

currently off limits to harvest. 
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C.6 Colors used in preference mapping 

 

   
LIGHT THINNING - YES 

LIGHT THINNING - YES 

LIGHT THINNING - NO 

HEAVY THINNING - YES 

HEAVY THINNING - NO 

RX FIRE - YES 

RX FIRE - NO 


